Chroma Backdoor: A Stealthy Backdoor Attack Based on High-Frequency Wavelet Injection in the UV Channels
Abstract
1. Introduction
- We propose a novel backdoor attack method based on high-frequency chroma domain manipulation. By leveraging the YUV color space and DWT, our approach embeds triggers in the high-frequency sub-bands of UV channels, significantly enhancing stealthiness.
- We introduce a polarity-based trigger mechanism, where a differential polarity pattern generates a distinct energy distribution in the frequency domain. This alternating positive–negative structure further enhances the model’s sensitivity to trigger features.
- Extensive experiments demonstrate that our method achieves a high attack success rate (ASR) while minimally impacting the model’s accuracy (ACC) on clean samples. Additionally, the triggers exhibit strong visual stealth, indicating promising practical applicability.
2. Related Work
2.1. Backdoor Attacks
2.2. Backdoor Defense
2.3. Discrete Wavelet Transform
3. Methodology
3.1. YUV Color Space Conversion
3.2. Wavelet Decomposition of UV Channels
3.3. High-Frequency Sub-Band Trigger Injection
3.4. Image Reconstruction
4. Experiments and Results
4.1. Experimental Environment and Performance Index
4.2. Overall Performance
4.3. Comparative Analysis with Existing Backdoor Attack Methods
4.4. Defense Robustness Test
4.4.1. Neural Cleanse Resistance Evaluation
4.4.2. Frequency-Domain Filtering
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Zhang, K.; Bilal, A.; Zhou, Y.; Fan, Y.; Pan, W.; Xie, X.; Peng, Q. An Integrated CSPPC and BiLSTM Framework for Malicious URL Detection. Sci. Rep. 2025, 15, 6659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pu, Z.; Jin, C.; Zhou, Y.; Wang, Z. A novel semi-local centrality to identify influential nodes in complex networks by integrating multidimensional factors. Eng. Appl. Artif. Intell. 2025, 145, 110177. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, Y.; Wang, C.; Hong, H.; Chen, J.; Gao, Q.; Ghobaei-Arani, M. Towards an Automatic Deployment Model of IoT Services in Fog Computing Using an Adaptive Differential Evolution Algorithm. Internet Things 2023, 24, 100918. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, Y.; Long, H.; Wang, C.; Hong, H.; Armaghan, S.M. Towards identifying influential nodes in complex networks using semi-local centrality metrics. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101798. [Google Scholar] [CrossRef]
- Asry, C.E.L.; Benchaji, I.; Douzi, S.; Ouahidi, B.E.L.; Ukwandu, E. Enhancing cybersecurity: A high-performance intrusion detection approach through boosting minority class recognition. PLoS ONE 2025, 20, e0317346. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, P.; Sun, K.; Yang, Y.; Lan, T.; Yang, H.; Rustam, F. Research on data imbalance in intrusion detection using CGAN. PLoS ONE 2023, 18, e0291750. [Google Scholar] [CrossRef]
- Barni, M.; Kallas, K.; Tondi, B. A new backdoor attack in cnns by training set corruption without label poisoning. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 101–105. [Google Scholar]
- Zhong, N.; Qian, Z.; Zhang, X. Sparse Backdoor Attack Against Neural Networks. Comput. J. 2024, 67, 1783–1793. [Google Scholar] [CrossRef]
- Gu, T.; Liu, K.; Dolan-Gavitt, B.; Garg, S. Badnets: Evaluating backdooring attacks on deep neural networks. IEEE Access 2019, 7, 47230–47244. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Li, B.; Lu, K.; Song, D. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv 2017, arXiv:1712.05526. [Google Scholar]
- Wan, S.; Wu, T.Y.; Hsu, H.W.; Wong, W.H.; Lee, C.Y. Feature consistency training with jpeg compressed images. IEEE Trans. Oncircuits Syst. Video Technol. 2019, 30, 4769–4780. [Google Scholar] [CrossRef]
- Ito, K.; Xiong, K. Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 2000, 45, 910–927. [Google Scholar] [CrossRef]
- Saravanan, G.; Yamuna, G.; Nandhini, S. Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016; pp. 0462–0466. [Google Scholar]
- Zeng, Y.; Pan, M.; Just, H.A.; Lyu, L.; Qiu, M.; Jia, R. Narcissus: A practical clean-label backdoor attack with limited information. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 26–30 November 2023; pp. 771–785. [Google Scholar]
- Chen, W.; Xu, X.; Wang, X.; Zhou, H.; Li, Z.; Chen, Y. Invisible backdoor attack with attention and steganography. Comput. Vis. Image Underst. 2024, 249, 104208. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wu, B.; Li, L.; He, R.; Lyu, S. Invisible backdoor attack with sample-specific triggers. In Proceedings of the IEEE/CVF International Conference On Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16463–16472. [Google Scholar]
- Jiang, W.; Li, H.; Xu, G.; Zhang, T. Color backdoor: A robust poisoning attack in color space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 8133–8142. [Google Scholar]
- Zhang, J.; Dongdong, C.; Huang, Q.; Liao, J.; Zhang, W.; Feng, H.; Hua, G.; Yu, N. Poison ink: Robust and invisible backdoor attack. IEEE Trans. Image Process. 2022, 31, 5691–5705. [Google Scholar] [CrossRef]
- Yin, J.Y.; Chen, H.L.; Li, J.J.; Gao, Y.D. Enhanced Coalescence Backdoor Attack Against DNN Based on Pixel Gradient. Neural Process. Lett. 2024, 56, 114. [Google Scholar] [CrossRef]
- Li, F.; Huang, M.; You, W.; Zhu, L.; Cheng, H.; Yang, R. Spatialspectral-Backdoor: Realizing backdoor attack for deep neural networks in brain–computer interface via EEG characteristics. Neurocomputing 2025, 616, 128902. [Google Scholar] [CrossRef]
- Zhai, Y.; Yang, L.; Yang, J.; He, L.; Li, Z. BadDGA: Backdoor attack on LSTM-based domain generation algorithm detector. Electronics 2023, 12, 736. [Google Scholar] [CrossRef]
- Tang, W.; Li, J.; Rao, Y.; Peng, F. A trigger-perceivable backdoor attack framework driven by image steganography. Pattern Recognit. 2025, 161, 111262. [Google Scholar] [CrossRef]
- Liu, J.; Peng, C.; Tan, W.; Shi, C. Federated Learning Backdoor Attack Based on Frequency Domain Injection. Entropy 2024, 26, 164. [Google Scholar] [CrossRef]
- Ma, Q.; Qin, J.; Yan, K.; Sun, H. Stealthy frequency-domain backdoor attacks: Fourier decomposition and fundamental frequency injection. IEEE Signal Process. Lett. 2023, 30, 1677–1681. [Google Scholar] [CrossRef]
- Li, G.; Chang, R.; Wang, Y.; Wang, C. Dual-domain based backdoor attack against federated learning. Neurocomputing 2025, 623, 129424. [Google Scholar] [CrossRef]
- Feng, Y.; Ma, B.; Zhang, J.; Zhao, S.; Xia, Y.; Tao, D. Fiba: Frequency-injection based backdoor attack in medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 20876–20885. [Google Scholar]
- Huang, K.; Li, Y.; Wu, B.; Qin, Z.; Ren, K. Backdoor defense via decoupling the training process. arXiv 2022, arXiv:2202.03423. [Google Scholar]
- Wang, B.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng, H.; Zhao, B.Y. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In Proceedings of the 2019 IEEE symposium on security and privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 707–723. [Google Scholar]
- Chen, W.; Wu, B.; Wang, H. Effective backdoor defense by exploiting sensitivity of poisoned samples. Adv. Neural Inf. Process. Syst. 2022, 35, 9727–9737. [Google Scholar]
- Li, Y.; Lyu, X.; Ma, X.; Koren, N.; Lyu, L.; Li, B.; Jiang, Y.G. Reconstructive neuron pruning for backdoor defense. In Proceedings of the 40th International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 19837–19854. [Google Scholar]
- Yang, Z.; Xu, B.; Zhang, J.M.; Kang, H.J.; Shi, J.; He, J.; Lo, D. Stealthy backdoor attack for code models. IEEE Trans. Softw. Eng. 2024, 50, 721–741. [Google Scholar] [CrossRef]
- Yin, J.L.; Wang, W.; Lin, W.; Liu, X. Adversarial-Inspired Backdoor Defense via Bridging Backdoor and Adversarial Attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; Volume 39, pp. 9508–9516. [Google Scholar]
- Sharma, Y.; Ding, G.W.; Brubaker, M. On the effectiveness of low frequency perturbations. arXiv 2019, arXiv:1903.00073. [Google Scholar]
- Feng, Y.; Ma, B.; Liu, D.; Zhang, Y.; Cai, W.; Xia, Y. Contrastive Neuron Pruning for Backdoor Defense. IEEE Trans. Image Process. 2025, 34, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Heil, C.E.; Walnut, D.F. Continuous and discrete wavelet transforms. SIAM Rev. 1989, 31, 628–666. [Google Scholar] [CrossRef]
- Durak, L.; Arikan, O. Short-time Fourier transform: Two fundamental properties and an optimal implementation. IEEE Trans. Signal Process. 2003, 51, 1231–1242. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical report; Toronto University: Toronto, ON, Canada, 2009. [Google Scholar]
- Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German traffic sign recognition benchmark: A multi-class classification competition. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 1453–1460. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Method | Injection Approach | Trigger |
---|---|---|
BadNets [9] | Airspace visible trigger attack | White patches |
Blend [10] | Attack of invisible disturbances in the airspace | Cartoon image |
SSBA [16] | Attack of invisible disturbances in the airspace | Invisible noise in specific samples |
Narcissus [14] | Clean-label attack | No trigger |
Wenbo Jiang et al. [17] | Space domain disturbance | Global color shift |
Poison Ink [18] | Unseen embeddings are achieved through a deep injection network | Image structure |
ASBA [15] | Combining attention mechanism and steganography | Dual-intensity trigger |
FIBA [26] | Injection through a linear combination of the image spectra of the Fourier transform | Invisible noise in specific samples |
Symbol | Definition |
---|---|
I | Input RGB image |
Y, U, V | Luminance (Y) and chrominance (U, V) channels in the YUV color space |
DWT | Discrete wavelet transform, used to decompose images into high- and low-frequency components |
db2 | Daubechies 2 wavelet basis, used for wavelet decomposition |
LLk | Low-frequency wavelet coefficients at level k |
LHk, HLk, HHk | High-frequency wavelet coefficients at level k, representing horizontal, vertical, and diagonal details, respectively |
T | Polarity-alternating trigger matrix, embedded in high-frequency sub-bands |
α | Trigger intensity coefficient, controlling the strength of the trigger |
IDWT | Inverse discrete wavelet transform, used for image reconstruction |
SSIM | Structural similarity index, measuring visual quality of images |
PSNR | Peak signal-to-noise ratio, quantifying image quality |
ASR | Attack success rate, measuring the effectiveness of the trigger in activating malicious behavior |
JND | Just noticeable difference, describing human visual sensitivity to chrominance variations |
Dataset | Training/Test Images | Labels | Image Size | Color | Model |
---|---|---|---|---|---|
CIFAR-10 | 50,000/10,000 | 10 | 32 × 32 × 3 | RGB | Resnet18 |
GTSRB | 39,209/12,630 | 43 | 32 × 32 × 3 | RGB | Resnet18 |
Attack | CIFAR-10 | GTSRB | ||||||
---|---|---|---|---|---|---|---|---|
ASR | ACC | PSNR | SSIM | ASR | ACC | PSNR | SSIM | |
No Attack | 92.16 | / | / | / | 95.96 | / | / | / |
RGB | 90.68 | 98.10 | 32.74 | 0.935 | 95.12 | 97.82 | 35.52 | 0.929 |
YUV | 91.42 | 98.92 | 38.55 | 0.981 | 94.92 | 99.12 | 41.42 | 0.969 |
UV | 91.88 | 98.54 | 45.18 | 0.999 | 95.73 | 98.98 | 45.09 | 0.997 |
Attack | CIFAR-10 | GTSRB | ||||||
---|---|---|---|---|---|---|---|---|
ASR | ACC | PSNR | SSIM | ASR | ACC | PSNR | SSIM | |
No Attack | / | 92.17 | / | / | / | 95.96 | / | / |
BadNets | 98.26 | 91.94 | 30.41 | 0.967 | 97.12 | 94.78 | 31.72 | 0.954 |
Blended | 98.38 | 91.34 | 20.15 | 0.829 | 99.29 | 95.10 | 23.43 | 0.795 |
FIBA | 97.37 | 91.55 | 25.40 | 0.962 | 97.34 | 93.55 | 25.40 | 0.962 |
SIG | 96.42 | 90.92 | 21.44 | 0.798 | 94.73 | 93.74 | 27.50 | 0.811 |
ASBA | 98.51 | 91.72 | 36.08 | 0.985 | 99.80 | 95.43 | 35.67 | 0.975 |
HCBA | 98.54 | 91.88 | 45.18 | 0.998 | 98.98 | 95.73 | 45.09 | 0.997 |
Attack | Anomaly Index | |
---|---|---|
CIFAR-10 | GTSRB | |
BadNet | 3.58 | 3.98 |
Blended | 1.79 | 1.64 |
HCBA (α = 0.8) | 2.27 | 2.45 |
HCBA (α = 0.2) | 1.67 | 1.98 |
Filter | CIFAR-10 | GTSRB | ||||
---|---|---|---|---|---|---|
ACC | ASR | ACC Decrease | ACC | ASR | ACC Decrease | |
Clean | 92.17 | 98.54 | / | 95.96 | 98.98 | / |
Gaussian filtering W = (1, 1) | 91.85 | 98.58 | 0.32 | 95.23 | 98.82 | 0.73 |
Gaussian filtering W = (3, 3) | 60.58 | 19.55 | 31.58 | 62.34 | 33.18 | 33.62 |
Median filtering W = (3, 3) | 71.02 | 13.63 | 21.15 | 79.19 | 46.63 | 16.77 |
Wiener filtering W = (3, 3) | 14.49 | 11.63 | 77.68 | 13.48 | 8.38 | 82.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zhang, K.; Zheng, B.; Zhou, Y.; Zhou, J.; Pan, W. Chroma Backdoor: A Stealthy Backdoor Attack Based on High-Frequency Wavelet Injection in the UV Channels. Symmetry 2025, 17, 1014. https://doi.org/10.3390/sym17071014
Fan Y, Zhang K, Zheng B, Zhou Y, Zhou J, Pan W. Chroma Backdoor: A Stealthy Backdoor Attack Based on High-Frequency Wavelet Injection in the UV Channels. Symmetry. 2025; 17(7):1014. https://doi.org/10.3390/sym17071014
Chicago/Turabian StyleFan, Yukang, Kun Zhang, Bing Zheng, Yu Zhou, Jinyang Zhou, and Wenting Pan. 2025. "Chroma Backdoor: A Stealthy Backdoor Attack Based on High-Frequency Wavelet Injection in the UV Channels" Symmetry 17, no. 7: 1014. https://doi.org/10.3390/sym17071014
APA StyleFan, Y., Zhang, K., Zheng, B., Zhou, Y., Zhou, J., & Pan, W. (2025). Chroma Backdoor: A Stealthy Backdoor Attack Based on High-Frequency Wavelet Injection in the UV Channels. Symmetry, 17(7), 1014. https://doi.org/10.3390/sym17071014