Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling and Realistic Equations of State
Abstract
:1. Introduction
1.1. Mass and Radius of a Neutron Star
1.2. Neutron Stars in Modified Theory of Gravity
1.3. Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling
2. Basic Equations
2.1. Action and Field Equations
2.2. Equation of State
2.2.1. Polytropic Equation of State
2.2.2. Realistic Equation of State
2.3. Boundary Conditions
3. External Vacuum Solution
4. Internal Solution
4.1. Scheme of Numerical Integration
4.2. Results of Numerical Integration
4.2.1. The Special Case
4.2.2. The Case
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baade, W.; Zwicky, F. Supernovae and cosmic rays. Phys. Rev. 1934, 45, 138. [Google Scholar]
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a rapidly pulsating radio source. Nature 1968, 217, 709. [Google Scholar] [CrossRef]
- Rezzolla, L.; Pizzochero, P.; Jones, D.I.; Rea, N.; Vidaña, I. (Eds.) The Physics and Astrophysics of Neutron Stars; Springer: Cham, Switzerland, 2018; Volume 457. [Google Scholar]
- Chandrasekhar, S. Introduction to the Study of Stellar Structure; The University of Chicago Press: Chicago, IL, USA, 1939. [Google Scholar]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. (Eds.) Neutron Stars: Equation of State and Structure; Springer: New York, NY, USA, 2007. [Google Scholar]
- Potekhin, A.Y. The physics of neutron stars. Physics-Uspekhi 2010, 53, 1235–1256. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. The Physics of Neutron Stars. Science 2004, 304, 536–542. [Google Scholar] [CrossRef]
- Lattimer, J.M. Introduction to neutron stars. AIP Conf. Proc. 2015, 1645, 61–78. [Google Scholar]
- Weber, F. Strange Quark Matter and Compact Stars. Prog. Part. Nucl. Phys. 2005, 54, 193–288. [Google Scholar] [CrossRef]
- Tolman, R.C. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys. Rev. 1939, 55, 364–373. [Google Scholar] [CrossRef]
- Oppenheimer, J.R.; Volkoff, G.M. On Massive Neutron Cores. Phys. Rev. 1939, 55, 374. [Google Scholar] [CrossRef]
- Thorsett, S.E.; Chakrabarty, D. Neutron Star Mass Measurements. I. Radio Pulsars. Astrophys. J. 1999, 512, 288. [Google Scholar] [CrossRef]
- Ozel, F.; Freire, P. Masses, Radii, and the Equation of State of Neutron Stars. Annu. Rev. Astron. Astrophys. 2016, 54, 401. [Google Scholar] [CrossRef]
- Nättilä, J.; Miller, M.C.; Steiner, A.W.; Kajava, J.J.E.; Suleimanov, V.F.; Poutanen, J. Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra. Astron. Astrophys. 2017, 608, A31. [Google Scholar] [CrossRef]
- Fonseca, E.; Cromartie, H.T.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian, Z.; Guillemot, L.; et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. Astrophys. J. Lett. 2021, 915, L12, 15. [Google Scholar] [CrossRef]
- Linares, M. Super-Massive Neutron Stars and Compact Binary Millisecond Pulsars. arXiv 2019, arXiv:1910.09572. [Google Scholar]
- Capano, C.D.; Tews, I.; Brown, S.M.; Margalit, B.; De, S.; Kumar, S.; Brown, D.A.; Krishnan, B.; Reddy, S. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron. 2020, 4, 625–632. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar]
- Myrzakulov, R.; Sebastiani, L.; Zerbini, S. Some aspects of generalized modified gravity models. Int. J. Mod. Phys. D 2013, 22, 1330017. [Google Scholar] [CrossRef]
- Langlois, D. Dark energy and modified gravity in degenerate higher-order scalar–tensor (DHOST) theories: A review. Int. J. Mod. Phys. D 2019, 28, 1942006. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav. 2015, 32, 243001. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Extreme neutron stars from Extended Theories of Gravity. J. Cosmol. Astropart. Phys. 2015, 2015, 001. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Odintsov, S.D. Neutron Stars in f(R)-Gravity and Its Extension with a Scalar Axion Field. Particles 2020, 3, 532–542. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Extended Gravity Description for the GW190814 Supermassive Neutron Star. Phys. Lett. B 2020, 811, 135910. [Google Scholar] [CrossRef]
- Doneva, D.D.; Yazadjiev, S.S. Neutron star solutions with curvature induced scalarization in the extended Gauss-Bonnet scalar-tensor theories. J. Cosmol. Astropart. Phys. 2018, 1804, 011. [Google Scholar] [CrossRef]
- Horbatsch, M.W.; Burgess, C.P. Semi-Analytic Stellar Structure in Scalar-Tensor Gravity. J. Cosmol. Astropart. Phys. 2011, 1108, 027. [Google Scholar] [CrossRef]
- Doneva, D.D.; Yazadjiev, S.S. Non-topological spontaneously scalarized neutron stars in tensor-multi-scalar theories of gravity. Phys. Rev. D 2020, 101, 104010. [Google Scholar] [CrossRef]
- Mendes, R.F.P.; Ortiz, N.; Stergioulas, N. Nonlinear dynamics of oscillating neutron stars in scalar-tensor gravity. Phys. Rev. D 2021, 104, 104036. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Neutron stars in scalar–tensor gravity with quartic order scalar potential. Ann. Phys. 2022, 440, 168839. [Google Scholar] [CrossRef]
- Rosca-Mead, R.; Moore, C.J.; Sperhake, U.; Agathos, M.; Gerosa, D. Structure of Neutron Stars in Massive Scalar-Tensor Gravity. Symmetry 2020, 12, 1384. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Velten, H.E.S.; Fabris, J.C.; Casarini, L. Neutron Stars in Rastall Gravity. Phys. Rev. D 2015, 92, 044020. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Mak, M.K.; Sushkov, S.V. Structure of neutron, quark, and exotic stars in Eddington-inspired Born-Infeld gravity. Phys. Rev. D 2013, 88, 044032. [Google Scholar] [CrossRef]
- Babichev, E.; Langlois, D. Relativistic stars in f(R) gravity. Phys. Rev. D 2009, 80, 121501. [Google Scholar] [CrossRef]
- Babichev, E.; Langlois, D. Relativistic stars in f(R) and scalar-tensor theories. Phys. Rev. D 2010, 81, 124051. [Google Scholar] [CrossRef]
- Cooney, A.; DeDeo, S.; Psaltis, D. Neutron stars in f(R) gravity with perturbative constraints. Phys. Rev. D 2010, 82, 064033. [Google Scholar] [CrossRef]
- Pace, M.; Said, J.L. A Perturbative Approach to Neutron Stars in f(R,T)-Gravity. Eur. Phys. J. C 2017, 77, 283. [Google Scholar] [CrossRef]
- Ilijic, S.; Sossich, M. Compact stars in f(T) extended theory of gravity. Phys. Rev. D 2018, 98, 064047. [Google Scholar] [CrossRef]
- Pani, P.; Berti, E.; Cardoso, V.; Read, J. Compact stars in alternative theories of gravity. Einstein-Dilaton-Gauss-Bonnet gravity. Phys. Rev. D 2011, 84, 104035. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Stellar structure models in modified theories of gravity: Lessons and challenges. Phys. Rep. 2020, 876, 1–75. [Google Scholar] [CrossRef]
- Lehebel, A. Compact astrophysical objects in modified gravity. arXiv 2018, arXiv:1810.04434. [Google Scholar]
- Doneva, D.D.; Pappas, G. Universal Relations and Alternative Gravity Theories. Astrophys. Space Sci. Libr. 2018, 457, 737–806. [Google Scholar]
- Blazquez-Salcedo, J.L.; Kleihaus, B.; Kunz, J. Compact Objects in Alternative Gravities. Universe 2022, 8, 153. [Google Scholar] [CrossRef]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Charmousis, C.; Copeland, E.J.; Padilla, A.; Saffin, P.M. General second order scalar-tensor theory, self tuning, and the Fab Four. Phys. Rev. Lett. 2012, 108, 051101. [Google Scholar] [CrossRef] [PubMed]
- Deffayet, C.; Gao, X.; Steer, D.A.; Zahariade, G. From k-essence to generalised Galileons. Phys. Rev. D 2011, 84, 064039. [Google Scholar] [CrossRef]
- Kobayashi, T. Horndeski theory and beyond: A review. Rep. Prog. Phys. 2019, 82, 086901. [Google Scholar] [CrossRef]
- Sushkov, S.V. Exact cosmological solutions with nonminimal derivative coupling. Phys. Rev. D 2009, 80, 103505. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Sushkov, S.V. Quintessence and phantom cosmology with non-minimal derivative coupling. Phys. Rev. D 2010, 81, 083510. [Google Scholar] [CrossRef]
- Sushkov, S. Realistic cosmological scenario with non-minimal kinetic coupling. Phys. Rev. D 2012, 85, 123520. [Google Scholar] [CrossRef]
- Starobinsky, A.A.; Sushkov, S.V.; Volkov, M.S. The screening Horndeski cosmologies. J. Cosmol. Astropart. Phys. 2016, 2016, 007. [Google Scholar] [CrossRef]
- Starobinsky, A.A.; Sushkov, S.V.; Volkov, M.S. Anisotropy screening in Horndeski cosmologies. Phys. Rev. D 2020, 101, 064039. [Google Scholar] [CrossRef]
- Hui, L.; Nicolis, A. A no-hair theorem for the galileon. Phys. Rev. Lett. 2013, 110, 241104. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M. Black holes with non-minimal derivative coupling. Phys. Rev. D 2012, 86, 084048. [Google Scholar] [CrossRef]
- Minamitsuji, M. Solutions in the scalar-tensor theory with nonminimal derivative coupling. Phys. Rev. D 2014, 89, 064017. [Google Scholar] [CrossRef]
- Anabalon, A.; Cisterna, A.; Oliva, J. Asymptotically locally AdS and flat black holes in Horndeski theory. Phys. Rev. D 2014, 89, 084050. [Google Scholar] [CrossRef]
- Babichev, E.; Charmousis, C. Dressing a black hole with a time-dependent Galileon. J. High Energy Phys. 2014, 1408, 106. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tanahashi, N. Exact black hole solutions in shift symmetric scalar–tensor theories. Prog. Theor. Exp. Phys. 2014, 2014, 073E02. [Google Scholar] [CrossRef]
- Babichev, E.; Charmousis, C.; Hassaine, M. Charged Galileon black holes. J. Cosmol. Astropart. Phys. 2015, 2015, 031. [Google Scholar] [CrossRef]
- Sushkov, S.V.; Korolev, R. Scalar wormholes with nonminimal derivative coupling. Class. Quant. Grav. 2012, 29, 085008. [Google Scholar] [CrossRef]
- Korolev, R.V.; Sushkov, S.V. Exact wormhole solutions with nonminimal kinetic coupling. Phys. Rev. D 2014, 90, 124025. [Google Scholar] [CrossRef]
- Cisterna, A.; Delsate, T.; Rinaldi, M. Neutron stars in general second order scalar-tensor theory: The case of nonminimal derivative coupling. Phys. Rev. D 2015, 92, 044050. [Google Scholar] [CrossRef]
- Cisterna, A.; Delsate, T.; Ducobu, L.; Rinaldi, M. Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity. Phys. Rev. D 2016, 93, 084046. [Google Scholar] [CrossRef]
- Maselli, A.; Silva, H.O.; Minamitsuji, M.; Berti, E. Neutron stars in Horndeski gravity. Phys. Rev. D 2016, 93, 124056. [Google Scholar] [CrossRef]
- Silva, H.O.; Maselli, A.; Minamitsuji, M.; Berti, E. Compact objects in Horndeski gravity. Int. J. Mod. Phys. D 2016, 25, 1641006. [Google Scholar] [CrossRef]
- Blazquez-Salcedo, J.L.; Eickhoff, K. Axial quasinormal modes of static neutron stars in the nonminimal derivative coupling sector of Horndeski gravity: Spectrum and universal relations for realistic equations of state. Phys. Rev. D 2018, 97, 104002. [Google Scholar] [CrossRef]
- Lehebel, A.; Babichev, E.; Charmousis, C. A no-hair theorem for stars in Horndeski theories. J. Cosmol. Astropart. Phys. 2017, 2017, 037. [Google Scholar] [CrossRef]
- Kashargin, P.E.; Sushkov, S.V. Anti-de Sitter neutron stars in the theory of gravity with nonminimal derivative coupling. J. Cosmol. Astropart. Phys. 2023, 2023, 005. [Google Scholar] [CrossRef]
- Tooper, R.F. Adiabatic Fluid Spheres in General Relativity. Astrophys. J. 1965, 142, 1541–1562. [Google Scholar] [CrossRef]
- Read, J.S.; Lackey, B.D.; Owen, B.J.; Friedman, J.L. Constraints on a phenomenologically parametrized neutron-star equation of state. Phys. Rev. D 2009, 79, 124032. [Google Scholar] [CrossRef]
- Read, J.S.; Markakis, C.; Shibata, M.; Uryu, K.; Creighton, J.D.E.; Friedman, J.L. Measuring the neutron star equation of state with gravitational wave observations. Phys. Rev. D 2009, 79, 124033. [Google Scholar] [CrossRef]
- Haensel, P.; Potekhin, A.Y. Analytical representations of unified equations of state of neutron-star matter. Astron. Astrophys. 2004, 428, 191–197. [Google Scholar] [CrossRef]
- Can Gungor, K.; Eksi, Y. Analytical Representation for Equations of State of Dense Matter. arXiv 2011, arXiv:1108.2166. [Google Scholar]
- Potekhin, A.Y.; Fantina, A.F.; Chamel, N.; Pearson, J.M.; Goriely, S. Analytical representations of unified equations of state for neutron-star matter. Astron. Astrophys. 2013, 560, A48. [Google Scholar] [CrossRef]
- Pearson, J.M.; Chamel, N.; Potekhin, A.Y.; Fantina, A.F.; Ducoin, C.; Dutta, A.K.; Goriely, S. Unified equations of state for cold non—Accreting neutron stars with Brussels—Montreal functionals. I. Role of symmetry energy. Mon. Not. R. Astron. Soc. 2018, 481, 2994–3026. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. Neutron Star Structure and the Equation of State. Astrophys. J. 2001, 550, 426E442. [Google Scholar] [CrossRef]
- Douchin, F.; Haensel, P. A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 2001, 380, 151. [Google Scholar] [CrossRef]
- Pandharipande, V.R.; Ravenhall, D.G. Hot Nuclear Matter. In Nuclear Matter and Heavy Ion Collisions; NATO ADS Series; Soyeur, M., Flocard, H., Tamain, B., Porneuf, M., Eds.; Reidel: Dordrecht, The Netherlands, 1989; Volume B205, p. 103. [Google Scholar]
- Goriely, S.; Chamel, N.; Pearson, J.M. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII: Stiffness and stability of neutron-star matter. Phys. Rev. C 2010, 82, 035804. [Google Scholar] [CrossRef]
- Pearson, J.M.; Goriely, S.; Chamel, N. Properties of the outer crust of neutron stars from Hartree-Fock-Bogoliubov mass models. Phys. Rev. C 2011, 83, 065810. [Google Scholar] [CrossRef]
- Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1: Equation of State and Structure, Astrophysics and Space Science Library; Springer: New York, NY, USA, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashargin, P.E.; Lebedev, A.A.; Sushkov, S.V. Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling and Realistic Equations of State. Symmetry 2025, 17, 910. https://doi.org/10.3390/sym17060910
Kashargin PE, Lebedev AA, Sushkov SV. Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling and Realistic Equations of State. Symmetry. 2025; 17(6):910. https://doi.org/10.3390/sym17060910
Chicago/Turabian StyleKashargin, Pavel E., Alexander A. Lebedev, and Sergey V. Sushkov. 2025. "Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling and Realistic Equations of State" Symmetry 17, no. 6: 910. https://doi.org/10.3390/sym17060910
APA StyleKashargin, P. E., Lebedev, A. A., & Sushkov, S. V. (2025). Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling and Realistic Equations of State. Symmetry, 17(6), 910. https://doi.org/10.3390/sym17060910