Macro-Financial Condition Index Construction and Forecasting Based on Machine Learning Techniques: Empirical Evidence from China
Abstract
:1. Introduction
2. Theoretical Review
2.1. Construction of Financial Conditions Index
2.2. Forecast of Financial Conditions
2.3. Literature Review
3. Methodology and Data
3.1. Methodology
3.1.1. TVP-KFAVAR Model
3.1.2. LSTM Model
3.1.3. GRU Model
3.1.4. BiLSTM Model
3.1.5. TCN Model
3.1.6. Transformer Model
3.2. Data Resource
4. Empirical Process
4.1. FCI Calculation Results
4.2. Analysis of the Reasons for Changes in the FCI
4.2.1. 2008 Global Financial Crisis (FCI Decline)
4.2.2. 2009 “Four Trillion” Stimulus Plan (Financial Conditions Index Recovery)
4.2.3. 2015 Stock Market Turbulence (Financial Conditions Index Plummets)
4.2.4. The Outbreak of the COVID-19 Pandemic in Early 2020 (The Financial Conditions Index Initially Fell and Then Rebounded)
4.2.5. The A-Share Market Has Continued to Fall Since May 2024 (The Financial Conditions Index Has Taken a Sharp Turn for the Worse)
4.3. Plausibility Testing
5. Further Discussion
6. Conclusions and Recommendations
6.1. Conclusions
6.2. Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TVP-KFAVAR | Kernel factor-augmented time-varying parameter vector autoregressive model |
FCI | Macro-financial conditions index |
GRU | Gated recurrent unit |
LSTM | Long short-term memory |
BiLSTM | Bidirectional long short-term memory |
TCN | Temporal convolutional network |
K-PCA | Kernel density principal component analysis |
References
- Quan, Y.; Miao, W. Asymmetric Risk Contagion Effect of the Interaction between the Real Economy and the Financial Sector-an Analysis Based on the Domestic Commodity Price Index. Financ. Innov. 2025, 11, 55. [Google Scholar] [CrossRef]
- Matheson, T.D. Financial Conditions Indexes for the United States and Euro Area. Econ. Lett. 2012, 115, 441–446. [Google Scholar] [CrossRef]
- Koop, G.; Korobilis, D. A New Index of Financial Conditions. Eur. Econ. Rev. 2014, 71, 101–116. [Google Scholar] [CrossRef]
- Debuque-Gonzales, M.; Socorro Gochoco-Bautista, M. Financial Conditions Indexes and Monetary Policy in Asia. Asian Econ. Pap. 2017, 16, 83–117. [Google Scholar] [CrossRef]
- Armendariz, T.; Ramirez, C. Estimation of a Financial Conditions Index for Mexico. Trimest. Econ. 2017, 84, 899–946. [Google Scholar]
- Wang, S.; Xu, F.; Chen, S. Constructing a Dynamic Financial Conditions Indexes by TVP-FAVAR Model. Appl. Econ. Lett. 2018, 25, 183–186. [Google Scholar] [CrossRef]
- Giri, A.K.; Bansod, D. Establishing Finance-Growth Linkage for India: A Financial Conditions Index (FCI) Approach. IJOEM 2019, 14, 1032–1059. [Google Scholar] [CrossRef]
- Osina, N. Global Liquidity, Market Sentiment, and Financial Stability Indices. J. Multinatl. Financ. Manag. 2019, 52–53, 100606. [Google Scholar] [CrossRef]
- Chen, L.; Han, Q.; Qiao, Z.; Stanley, H.E. Correlation Analysis and Systemic Risk Measurement of Regional, Financial and Global Stock Indices. Phys. A Stat. Mech. Its Appl. 2020, 542, 122653. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Laura Garcia, A. The COVID-19 Economic Crisis in Mexico through the Lens of a Financial Conditions Index. Latin. Am. Econ. Rev. 2021, 30, 1–27. [Google Scholar] [CrossRef]
- Tissaoui, K.; Hkiri, B.; Zaghdoudi, T.; Azibi, J. Illiquidity, Uncertainty Indices, and COVID-19 Outbreak Conditions: Empirical Evidence from the US Financial Market. Complexity 2022, 2022, 2818633. [Google Scholar] [CrossRef]
- Zhu, S.; Kavanagh, E.; O’Sullivan, N. Constructing a Financial Conditions Index for the United Kingdom: A Comparative Analysis. Int. J. Financ. Econ. 2021, 26, 2976–2989. [Google Scholar] [CrossRef]
- Ferriani, F.; Gazzani, A. Financial Condition Indices for Emerging Market Economies: Can Google Help? Econ. Lett. 2022, 216, 110528. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Z.; Zhu, L. A Model-Based Index for Systemic Risk Contribution Measurement in Financial Networks. Econ. Model. 2021, 95, 35–48. [Google Scholar] [CrossRef]
- Chabot, M. Financial Stability Indices and Financial Networks Dynamics in Europe. Rev. Econ. 2021, 72, 591–631. [Google Scholar] [CrossRef]
- AL-Rjoub, S.A.M. A Financial Stability Index for Jordan. J. Cent. Bank Theor. Pract. 2021, 10, 157–178. [Google Scholar] [CrossRef]
- Gustiana, A. Nasrudin Evaluating Financial System Stability Using Heatmap from Aggregate Financial Stability Index with Change Point Analysis Approach. Asia-Pac. Financ. Mark. 2021, 28, 367–396. [Google Scholar] [CrossRef]
- Kabundi, A.; Mbelu, A. Estimating a Time-Varying Financial Conditions Index for South Africa. Empir Econ. 2021, 60, 1817–1844. [Google Scholar] [CrossRef]
- Chiappari, M.; Scotti, F.; Flori, A. Hedging Financial Risks with a Climate Index Based on EU ETS Firms. Energy 2025, 320, 135277. [Google Scholar] [CrossRef]
- Ganchev, G.T.; Paskaleva, M.G. The Importance of Financial Condition Indices in South-Eastern Europe. Int. J. Contemp. Econ. Adm. Sci. 2020, 10, 78–106. [Google Scholar] [CrossRef]
- Brum-Civelli, C.; Fried-Gindel, A.; Garcia-Hiernaux, A. IFCI-SA: International Financial Conditions Index for South American Economies. Res. Int. Bus. Financ. 2024, 72, 102507. [Google Scholar] [CrossRef]
- Bas, T.; Malki, I.; Sivaprasad, S. Connectedness between Central Bank Digital Currency Index, Financial Stability and Digital Assets. J. Int. Financ. Mark. Inst. Money 2024, 92, 101981. [Google Scholar] [CrossRef]
- Zhang, W. Dynamic Monitoring of Financial Security Risks: A Novel China Financial Risk Index and an Early Warning System. Econ. Lett. 2024, 234, 111445. [Google Scholar] [CrossRef]
- Kazdal, A.; Korkmaz, H.I.; Yilmaz, M.H. Composing a High-Frequency Financial Conditions Index and the Implications for Economic Activity. Borsa Istanb. Rev. 2022, 22, 769–779. [Google Scholar] [CrossRef]
- Morana, C. A New Macro-Financial Condition Index for the Euro Area. Econom. Stat. 2024, 29, 64–87. [Google Scholar] [CrossRef]
- Sahoo, J. Financial Stress Index, Growth and Price Stability in India: Some Recent Evidence. Transnatl. Corp. Rev. 2021, 13, 222–236. [Google Scholar] [CrossRef]
- Angelopoulou, E.; Balfoussia, H.; Gibson, H.D. Building a Financial Conditions Index for the Euro Area and Selected Euro Area Countries: What Does It Tell Us about the Crisis? Econ. Model. 2014, 38, 392–403. [Google Scholar] [CrossRef]
- Wang, J.; Tang, W. Construction and Analysis of Chinese Macro-Financial Stability Index. Comput Econ. 2024. [Google Scholar] [CrossRef]
- Lupu, R.; Călin, A.C.; Dumitrescu, D.G.; Lupu, I. Introducing a Novel Fragility Index for Assessing Financial Stability amid Asset Bubble Episodes. N. Am. J. Econ. Financ. 2025, 75, 102291. [Google Scholar] [CrossRef]
- Reynolds, S.; Fowles, R.; Gander, J.; Kunaporntham, W.; Ratanakomut, S. Forecasting the Probability of Failure of Thailand’s Financial Companies in the Asian Financial Crisis. Econ. Dev. Cult. Change 2002, 51, 237–246. [Google Scholar] [CrossRef]
- Niemira, M.P.; Saaty, T.L. An Analytic Network Process Model for Financial-Crisis Forecasting. Int. J. Forecast. 2004, 20, 573–587. [Google Scholar] [CrossRef]
- Chang, J.; Cho, Y.J.; Shin, H.-H. The Change in Corporate Transparency of Korean Firms after the Asian Financial Crisis: An Analysis Using Analysts’ Forecast Data. Corp. Gov. 2007, 15, 1144–1167. [Google Scholar] [CrossRef]
- Yu, L.; Wang, S.; Lai, K.K.; Wen, F. A Multiscale Neural Network Learning Paradigm for Financial Crisis Forecasting. Neurocomputing 2010, 73, 716–725. [Google Scholar] [CrossRef]
- Zaleskiewicz, T. Financial Forecasts during the Crisis: Were Experts More Accurate than Laypeople? J. Econ. Psychol. 2011, 32, 384–390. [Google Scholar] [CrossRef]
- Halbleib, R.; Pohlmeier, W. Improving the Value at Risk Forecasts: Theory and Evidence from the Financial Crisis. J. Econ. Dyn. Control 2012, 36, 1212–1228. [Google Scholar] [CrossRef]
- Chen, C.W.S.; Gerlach, R.; Lin, E.M.H.; Lee, W.C.W. Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis. J. Forecast. 2012, 31, 661–687. [Google Scholar] [CrossRef]
- Metescu, A.-M.; Borisov, D.; Banica, R.M. Forecasting Rates of Return Using Geometric Brownian Motion during the Global Financial Crisis Period. Metal. Int. 2013, 18, 134–137. [Google Scholar]
- Berger, T.; Missong, M. Financial Crisis, Value-at-Risk Forecasts and the Puzzle of Dependency Modeling. Int. Rev. Financ. Anal. 2014, 33, 33–38. [Google Scholar] [CrossRef]
- Audrino, F. Forecasting Correlations during the Late-2000s Financial Crisis: The Short-Run Component, the Long-Run Component, and Structural Breaks. Comput. Stat. Data Anal. 2014, 76, 43–60. [Google Scholar] [CrossRef]
- Alessi, L.; Ghysels, E.; Onorante, L.; Peach, R.; Potter, S. Central Bank Macroeconomic Forecasting during the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences. J. Bus. Econ. Stat. 2014, 32, 483–500. [Google Scholar] [CrossRef]
- Kunze, F.; Kramer, J.; Rudschuck, N. Interest Rate Forecasts in Times of Financial Crisis: What Might Be Interesting to Know? Eur. J. Polit. Econ. 2014, 34, S45–S52. [Google Scholar] [CrossRef]
- Cao, W.; Cao, L. Financial Crisis Forecasting via Coupled Market State Analysis. IEEE Intell. Syst. 2015, 30, 18–25. [Google Scholar] [CrossRef]
- Makoni, T.; Chikobvu, D. Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa. Economies 2023, 11, 158. [Google Scholar] [CrossRef]
- Colladon, A.F.; Grassi, S.; Ravazzolo, F.; Violante, F. Forecasting Financial Markets with Semantic Network Analysis in the COVID-19 Crisis. J. Forecast. 2023, 42, 1187–1204. [Google Scholar] [CrossRef]
- Abrego-Perez, A.L.; Pacheco-Carvajal, N.; Diaz-Jimenez, M.C. Forecasting Agricultural Financial Weather Risk Using PCA and SSA in an Index Insurance Model in Low-Income Economies. Appl. Sci. 2023, 13, 2425. [Google Scholar] [CrossRef]
- Li, Y.; Liang, C.; Huynh, T.L.D. Combination Forecast Based on Financial Stress Categories for Global Equity Market Volatility: The Evidence during the COVID-19 and the Global Financial Crisis Periods. Appl. Econ. 2024, 56, 4435–4470. [Google Scholar] [CrossRef]
- Hafiz, F.; Broekaert, J.; Swain, A. Evolution of Neural Architectures for Financial Forecasting: A Note on Data Incompatibility during Crisis Periods. Ann. Oper. Res. 2024, 346, 1011–1025. [Google Scholar] [CrossRef]
- Koong, S.S.; Law, S.H.; Ibrahim, M.H. Credit Expansion and Financial Stability in Malaysia. Econ. Model. 2017, 61, 339–350. [Google Scholar] [CrossRef]
- Doz, C.; Giannone, D.; Reichlin, L. A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering. J. Econom. 2011, 164, 188–205. [Google Scholar] [CrossRef]
Type | Financial Markets | Basic Indicator | Variable |
---|---|---|---|
Financial condition variables | Stock market | ln Monthly closing price of CSI 300 Index/CPI2005 | X1 |
ln Shanghai Composite Index/CPI2005 | X2 | ||
ln Shenzhen Composite Index/CPI2005 | X3 | ||
ln Hang Seng Index/CPI2005 | X4 | ||
ln Shanghai Stock Exchange total market value/CPI2005 | X5 | ||
ln Shanghai Stock Exchange: A shares: total transaction amount/CPI2005 | X6 | ||
Bond market | ln China Bond Composite Index/CPI2005 | X7 | |
ln China Bond Total Price Index/CPI2005 | X8 | ||
China Bond Treasury Bond Yield to Maturity: 1 month | X9 | ||
China Bond Treasury Bond Yield to Maturity: 3 months | X10 | ||
China Bond Treasury Bond Yield to Maturity: 6 months | X11 | ||
China Bond Treasury Bond Yield to Maturity: 1 year | X12 | ||
China Bond Treasury Bond Yield to Maturity: 10 years | X13 | ||
China Bond Treasury Bond Yield to Maturity: 30 years | X14 | ||
Interest rate market | Pledged repo weighted interest rate 7 days | X15 | |
Pledged repo weighted interest rate 14 days | X16 | ||
Pledged repo weighted repo rate January | X17 | ||
Short-term loan rate | X18 | ||
lnCurrent deposit rate | X19 | ||
Exchange rate market | lnForeign exchange reserves/CPI2000 | X20 | |
lnReal effective exchange rate index/CPI2005 | X21 | ||
lnRMB exchange rate × 100/CPI2005 | X22 | ||
Derivatives market | lnHang Seng Index option contract trading volume/CPI2005 | X23 | |
lnNational futures trading volume/CPI2005 | X24 | ||
lnHang Seng Index option_contract trading volume/CPI2005 | X25 | ||
Currency market | ln7-day reverse repo | X26 | |
lnM1/CPI2005 | X27 | ||
M2/CPI2005 | X28 | ||
lnFinancial institutions: deposit–loan gap/CPI2005 | X29 | ||
lnRMB deposit reserve ratio: large deposit-taking financial institutions | X30 | ||
Securities investment fund trading volume/CPI2005 | X31 | ||
lnFinancial institutions’ loan balances year-on-year | X32 | ||
lnFinancial institutions_loan balances | X33 | ||
External economic variables | Macroeconomic variables in China | CPI | Y1 |
GDP Growth Rate | Y2 | ||
ln National Real Estate Prosperity Index/CPI2005 | Y3 | ||
ln Social Financing Scale/CPI2005 | Y4 | ||
ln Gold Reserves/CPI2005 | Y5 | ||
Completed Real Estate Development Investment | Y6 | ||
Housing Provident Fund Interest Rate for More Than 5 Years | Y7 | ||
ln Export Amount/CPI2005 | Y8 | ||
ln Import Amount/CPI2005 | Y9 | ||
ln Consumer Confidence Index/CPI2005 | Y10 | ||
ln Macroeconomic Prosperity Index-Leading Index/CPI2005 | Y11 | ||
ln Macroeconomic Prosperity Index-Lagging Index/CPI2005 | Y12 | ||
Industrial Added Value Above Designated Size/Year-on-year Growth/CPI2005 | Y13 | ||
Public Fiscal Revenue/CPI2005 | Y14 | ||
Public Fiscal Expenditure/CPI2005 | Y15 | ||
Macroeconomic variables in the United States | Standard & Poor’s/CS House Price Index | Y16 | |
CPI | Y17 | ||
M1 | Y18 | ||
M2 | Y19 | ||
Federal Funds Rate | Y20 | ||
SP500 Index | Y21 | ||
Dow Jones Index | Y22 | ||
Nasdaq Index | Y23 | ||
S&P 500 Index Return | Y24 | ||
GDP | Y25 |
Variable | Difference Order | Test | p-Value |
---|---|---|---|
Financial Conditions Index | 1 | −2.925 | 0.0425 |
National Real Estate Prosperity Index | 1 | −2.956 | 0.0393 |
Macroeconomic Prosperity Index-Leading Index | 0 | −4.967 | 0.0000 |
GDP Growth Rate | 0 | −4.886 | 0.0000 |
L1.Financial Conditions Index | Coefficient | Std. Err. | p-Value |
---|---|---|---|
Financial Conditions Index | 0.989 | 0.005 | 0.000 |
National Real Estate Prosperity Index | 0.001 | 0.001 | 0.083 |
Macroeconomic Prosperity Index-Leading Index | 0.003 | 0.001 | 0.000 |
GDP Growth Rate | 0.005 | 0.001 | 0.000 |
LSTM | GRU | BiLSTM | TCN | Transformer | ARIMA | |
---|---|---|---|---|---|---|
RMSE | 0.1066 | 0.1045 | 0.1217 | 0.1446 | 0.3300 | 0.2853 |
LSTM | GRU | BiLSTM | TCN | Transformer | ARIMAX | |
---|---|---|---|---|---|---|
RMSE | 0.3180 | 0.2457 | 0.3110 | 0.2110 | 0.2803 | 0.3421 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xue, L.; Liang, J. Macro-Financial Condition Index Construction and Forecasting Based on Machine Learning Techniques: Empirical Evidence from China. Symmetry 2025, 17, 904. https://doi.org/10.3390/sym17060904
Li X, Xue L, Liang J. Macro-Financial Condition Index Construction and Forecasting Based on Machine Learning Techniques: Empirical Evidence from China. Symmetry. 2025; 17(6):904. https://doi.org/10.3390/sym17060904
Chicago/Turabian StyleLi, Xinlong, Liqing Xue, and Jiayuan Liang. 2025. "Macro-Financial Condition Index Construction and Forecasting Based on Machine Learning Techniques: Empirical Evidence from China" Symmetry 17, no. 6: 904. https://doi.org/10.3390/sym17060904
APA StyleLi, X., Xue, L., & Liang, J. (2025). Macro-Financial Condition Index Construction and Forecasting Based on Machine Learning Techniques: Empirical Evidence from China. Symmetry, 17(6), 904. https://doi.org/10.3390/sym17060904