Symmetry in Nonlinear Dynamics and Chaos II
Funding
Conflicts of Interest
References
- Elaskar, S.; del Rio, E. Review of Chaotic Intermittency. Symmetry 2023, 15, 1195. [Google Scholar] [CrossRef]
- Elaskar, S.; del Rio, E. New Advances on Chaotic Intermittency and Applications; Springer: New York, NY, USA, 2017; ISBN 978-3-319-47836-4. [Google Scholar]
- Bogoi, A.; Strătilă, S.; Cican, G.; Crunteanu, D.; Leventiu, C. Impact of Stochastic Atmospheric Density on Satellite Orbit Stability. Symmetry 2025, 17, 402. [Google Scholar] [CrossRef]
- Tang, J.; Wang, H.; Zhao, M.; Sun, P.; Hao, Y.; Zhu, Z. Weed Detection in Lily Fields Using YOLOv7 Optimized by Chaotic Harris Hawks Algorithm for Underground Resource Competition. Symmetry 2025, 17, 370. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN Feature Based Graph Convolutional Network for Weed and Crop Recognition in Smart Farming. Comput. Electron. Agric. 2020, 174, 105450. [Google Scholar] [CrossRef]
- Prykarpatski, A.K.; Kycia, R.A.; Dilnyi, V.M. On Superization of Nonlinear Integrable Dynamical Systems. Symmetry 2025, 17, 125. [Google Scholar] [CrossRef]
- Shams, M.; Carpentieri, B. On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models. Mathematics 2023, 11, 4914. [Google Scholar] [CrossRef]
- Shams, M.; Carpentieri, B. A New High-Order Fractional Parallel Iterative Scheme for Solving Nonlinear Equations. Symmetry 2024, 16, 1452. [Google Scholar] [CrossRef]
- Sarıkaya, M.S.; El Naser, Y.H.; Kaçar, S.; Yazıcı, I.; Derdiyok, A. Chaotic-Based Improved Henry Gas Solubility Optimization Algorithm: Application to Electric Motor Control. Symmetry 2024, 16, 1435. [Google Scholar] [CrossRef]
- Dragan, V.; Popa, I. The Linear Quadratic Optimal Control Problem for Stochastic Systems Controlled by Impulses. Symmetry 2024, 16, 1170. [Google Scholar] [CrossRef]
- Almatroud, O.A.; Hammad, M.A.; Dababneh, A.; Diabi, L.; Ouannas, A.; Khennaoui, A.A.; Alshammari, S. Multistability, Chaos, and Synchronization in Novel Symmetric Difference Equation. Symmetry 2024, 16, 1093. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, K.; Wang, H.; Yao, Z. Coexisting Hyperchaos and Multistability in a Discrete Memristor-Coupled Bi-Neuron Model. Nonlinear Dyn. 2024, 112, 9547–9561. [Google Scholar] [CrossRef]
- Yang, R.; Tian, H.; Wang, Z.; Wang, W.; Zhang, Y. Dynamical Analysis and Synchronization of Complex Network Dynamic Systems under Continuous-Time. Symmetry 2024, 16, 687. [Google Scholar] [CrossRef]
- Strogatz, S.H. Exploring Complex Networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef]
- Nayfeh, A.H.; Balachandran, B. Applied Nonlinear Dynamics; Wiley: New York, NY, USA, 1995; ISBN 0-471-59348-6. [Google Scholar]
- Navascués, M.A.; Mohapatra, R.N. Fixed Point Dynamics in a New Type of Contraction in b-Metric Spaces. Symmetry 2024, 16, 506. [Google Scholar] [CrossRef]
- Fotopoulou, S.D.; Pitilakis, K.D. Vulnerability Assessment of Reinforced Concrete Buildings at Precarious Slopes Subjected to Combined Ground Shaking and Earthquake Induced Landslide. Soil Dyn. Earthq. Eng. 2017, 93, 84–98. [Google Scholar] [CrossRef]
- Vielma-Quintero, J.C.; Diaz-Segura, E.G.; Vielma, J.C. Influence of the Plan Structural Symmetry on the Non-Linear Seismic Response of Framed Reinforced Concrete Buildings. Symmetry 2024, 16, 370. [Google Scholar] [CrossRef]
- Demirel, Y.; Gerbaud, V. Fundamentals of Nonequilibrium Thermodynamics. In Nonequilibrium Thermodynamics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 135–186. [Google Scholar] [CrossRef]
- Hütter, M.; Theo, A.; Tervoort, T.A. Coarse Graining in Elasto-viscoplasticity: Bridging the Gap from Microscopic Fluctuations to Dissipation. Adv. Appl. Mech. 2009, 42, 253–317. [Google Scholar] [CrossRef]
- Lurie, S.A.; Belov, P.A.; Matevossian, H.A. Symmetry Properties of Models for Reversible and Irreversible Thermodynamic Processes. Symmetry 2023, 15, 2173. [Google Scholar] [CrossRef]
- Moysis, L.; Lawnik, M.; Volos, C.; Baptista, M.; Goudos, S. Chaotic Maps with Tunable Mean Value—Application to a UAV Surveillance Mission. Symmetry 2023, 15, 2138. [Google Scholar] [CrossRef]
- Curiac, D.I.; Volosencu, C. Path Planning Algorithm Based on Arnold Cat Map for Surveillance UAVs. Def. Sci. J. 2015, 65, 483–488. [Google Scholar] [CrossRef]
- Bogoi, A.; Dan, C.; Strătilă, S.; Cican, G.; Crunteanu, D. Assessment of Stochastic Numerical Schemes for Stochastic Differential Equations with “White Noise” Using Itô’s Integral. Symmetry 2023, 15, 2038. [Google Scholar] [CrossRef]
- Newton, N.J. Asymptotically Efficient Runge-Kutta Methods for a Class of Ito and Stratonovich Equations. SIAM J. Appl. Math. 1991, 51, 542–567. [Google Scholar] [CrossRef]
- Verma, A.; Sumelka, W.; Yadav, P. The Numerical Solution of Nonlinear Fractional Lienard and Duffing Equations Using Orthogonal Perceptron. Symmetry 2023, 15, 1753. [Google Scholar] [CrossRef]
- Singh, H.; Srivastava, H.M. Numerical Investigation of the Fractional-Order Liénard and Duffing Equations Arising in Oscillating Circuit Theory. Front. Phys. 2020, 8, 120. [Google Scholar] [CrossRef]
- Nourazar, S.; Mirzabeigy, A. Approximate Solution for Nonlinear Duffing Oscillator with Damping Effect Using the Modified Differential Transform Method. Sci. Iran. B 2013, 20, 364–368. [Google Scholar]
- Ejikeme, C.L.; Oyesanya, M.O.; Agbebaku, D.F.; Okofu, M.B. Solution to Nonlinear Duffing Oscillator with Fractional Derivatives Using Homotopy Analysis Method (HAM). Glob. J. Pure Appl. Math. 2018, 14, 1363–1388. [Google Scholar]
- Matouk, A.E.; Almutairi, D.K.; Herzallah, M.A.E.; Abdelkawy, M.A.; Abdelhameed, T.N. Symmetry in a Fractional-Order Multi-Scroll Chaotic System Using the Extended Caputo Operator. Symmetry 2023, 15, 1582. [Google Scholar] [CrossRef]
- Potirakis, S.M.; Papadopoulos, P.; Matiadou, N.; Hanias, M.P.; Stavrinides, S.G.; Balasis, G.; Contoyiannis, Y. Spontaneous Symmetry Breaking in Systems Obeying the Dynamics of On–Off Intermittency and Presenting Bimodal Amplitude Distributions. Symmetry 2023, 15, 1448. [Google Scholar] [CrossRef]
- Heagy, J.F.; Platt, N.; Hammel, S.M. Characterization of On-Off Intermittency. Phys. Rev. E 1994, 49, 1140–1150. [Google Scholar] [CrossRef]
- Khan, H.; Alzabut, J.; Alfwzan, W.F.; Gulzar, H. Nonlinear Dynamics of a Piecewise Modified ABC Fractional-Order Leukemia Model with Symmetric Numerical Simulations. Symmetry 2023, 15, 1338. [Google Scholar] [CrossRef]
- Ain, Q.T.; Nadeem, M.; Akgul, A.; De la Sen, M. Controllability of Impulsive Neutral Fractional Stochastic Systems. Symmetry 2022, 14, 2612. [Google Scholar] [CrossRef]
- Lawnik, M.; Moysis, L.; Volos, C. A Family of 1D Chaotic Maps without Equilibria. Symmetry 2023, 15, 1311. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Zeng, Z. A simple no-equilibrium chaotic system with only one signum function for generating multi-directional variable hidden attractors and its hardware implementation. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 053129. [Google Scholar] [CrossRef]
- Moysis, L.; Lawnik, M.; Antoniades, I.P.; Kafetzis, I.; Baptista, M.; Volos, C. Chaotification of 1D Maps by Multiple Remainder Operator Additions—Application to B-Spline Curve Encryption. Symmetry 2023, 15, 726. [Google Scholar] [CrossRef]
- Moysis, L.; Kafetzis, I.; Baptista, M.S.; Volos, C. Chaotification of One-Dimensional Maps Based on Remainder Operator Addition. Mathematics 2022, 10, 2801. [Google Scholar] [CrossRef]
- Agop, S.; Filipeanu, D.; Tigănas, C.; Grigoras-Ichim, C.; Morosan-Dănilă, L.; Gavrilut, A.; Agop, M.; Stefan, G. Towards a Holographic-Type Perspective in the Analysis of Complex-System Dynamics. Symmetry 2023, 15, 681. [Google Scholar] [CrossRef]
- Elaskar, S.; del Rio, E.; Schulz, W. Analysis of the Type V Intermittency Using the Perron-Frobenius Operator. Symmetry 2022, 14, 2519. [Google Scholar] [CrossRef]
- Elaskar, S.; del Rio, E.; Zapico, E. Evaluation of the Statistical Properties for Type-II Intermittency Using the Perron-Frobenius Operator. Nonlinear Dyn. 2016, 86, 1107–1116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elaskar, S. Symmetry in Nonlinear Dynamics and Chaos II. Symmetry 2025, 17, 846. https://doi.org/10.3390/sym17060846
Elaskar S. Symmetry in Nonlinear Dynamics and Chaos II. Symmetry. 2025; 17(6):846. https://doi.org/10.3390/sym17060846
Chicago/Turabian StyleElaskar, Sergio. 2025. "Symmetry in Nonlinear Dynamics and Chaos II" Symmetry 17, no. 6: 846. https://doi.org/10.3390/sym17060846
APA StyleElaskar, S. (2025). Symmetry in Nonlinear Dynamics and Chaos II. Symmetry, 17(6), 846. https://doi.org/10.3390/sym17060846