A System of Coupled Matrix Equations with an Application over the Commutative Quaternion Ring
Abstract
:1. Introduction
2. Preliminaries
3. The Solution of System (1) over
4. The Hermitian Solution of System (1) over
5. An Application of System (1) over
6. Numerical Illustration of an Algorithmic Approach
Algorithm 1 For the system (1) |
|
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Description |
---|---|
The commutative quaternion ring | |
The real number field | |
The complex number field | |
The set of all matrices over | |
The set of all matrices over | |
The set of all matrices over | |
The collections of all real anti-symmetric matrices | |
The collections of all real symmetric matrices | |
The collections of all Hermitian commutative quaternion matrices | |
The conjugate transpose of A | |
The transpose of A | |
The complex representation of D | |
The Kronecker product of two matrices C and D | |
The vec-operator of D | |
The Frobenius norm of D |
References
- Segre, C. The real representations of complex elements and extension to bicomplex systems. Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, M.; Ge, X. Reduced biquaternion canonical transform, convolution and correlation. Signal Process. 2011, 91, 2147–2153. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, D.; Vasiliev, V.I.; Jiang, T.S. Algebraic techniques for Maxwell’s equations in commutative quaternionic electromagnetics. Eur. Phys. J. Plus 2022, 137, 577. [Google Scholar] [CrossRef]
- Isokawa, T.; Nishimura, H.; Matsui, N. Commutative quaternion and multistate Hopfield neural networks. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Kobayashi, M. Quaternionic Hopfield neural networks with twin-multistate activation function. Neurocomputing 2017, 267, 304–310. [Google Scholar] [CrossRef]
- Pei, S.C.; Chang, J.H.; Ding, J.J. Commutative reduced biquaternions and their Fourier transform for signal and image processing applications. IEEE Trans. Signal Process. 2004, 52, 2012–2031. [Google Scholar] [CrossRef]
- Pei, S.C.; Chang, J.H.; Ding, J.J.; Chen, M.Y. Eigenvalues and singular value decompositions of reduced biquaternion matrices. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 2673–2685. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, X.; Lin, D.; Li, B.; Yang, X.J. Global Exponential Stability Analysis of Commutative Quaternion-Valued Neural Networks with Time Delays on Time Scales. Neural Process Lett. 2023, 55, 6339–6360. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, T.S.; Wang, G.; Vasil’ev, V.I. On singular value decomposition and generalized inverse of a commutative quaternion matrix and applications. Appl. Math. Comput. 2024, 460, 128291. [Google Scholar] [CrossRef]
- Syrmors, V.L.; Lewis, F.L. Output feedback eigenstructure assignment using two Sylvester equations. IEEE Trans. Autom. Control 1993, 38, 495–499. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Jiang, D.C.; Wang, J.A. A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans. Neural Netw. 2002, 13, 1053–1063. [Google Scholar] [CrossRef]
- Castelan, E.B.; da Silva, V.G. On the solution of a Sylvester equation appearing in descriptor systems control theory. Syst. Control Lett. 2005, 54, 109–117. [Google Scholar] [CrossRef]
- Xie, M.Y.; Wang, Q.W. Reducible solution to a quaternion tensor equation. Front. Math. China 2020, 15, 1047–1070. [Google Scholar] [CrossRef]
- Liu, L.S.; Zhang, S. A coupled quaternion matrix equations with applications. J. Appl. Math. Comput. 2023, 69, 4069–4089. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, Q.W. The general solutions to some systems of matrix equations. Linear Multilinear Algebra 2015, 63, 2017–2032. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wang, Q.W. The η-(anti-)Hermitian solution to a constrained Sylvester-type generalized commutative quaternion matrix equation. Banach J. Math. Anal. 2023, 17, 40. [Google Scholar] [CrossRef]
- Kyrchei, I. Cramer’s rules of η-(skew-) Hermitian solutions to the quaternion Sylvester-type matrix equations. Adv. Appl. Clifford Algebras. 2019, 29, 56. [Google Scholar] [CrossRef]
- Rehman, A.; Rahman, M.Z.U.; Ghaffar, A.; Martin-Barreiro, C.; Castro, C.; Leiva, V.; Cabezas, X. Systems of quaternionic linear matrix equations: Solution, computation, algorithm, and applications. AIMS. Math. 2024, 9, 26371–26402. [Google Scholar] [CrossRef]
- Si, K.W.; Wang, Q.W. The General Solution to a Classical Matrix Equation AXB = C over the Dual Split Quaternion Algebra. Symmetry 2024, 16, 491. [Google Scholar] [CrossRef]
- Wei, A.; Li, Y.; Ding, W.X.; Zhao, J.L. Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS.Math. 2022, 7, 5029–5048. [Google Scholar] [CrossRef]
- Wang, Q.W.; He, Z.H.; Zhang, Y. Constrained two-side coupled Sylverster-type quaternion matrix equations. Automatica 2019, 101, 207–213. [Google Scholar] [CrossRef]
- Xu, X.L.; Wang, Q.W. The consistency and the general common solution to some quaternion matrix equations. Ann. Funct. Anal. 2023, 14, 53. [Google Scholar] [CrossRef]
- Kirkland, S.J.; Neumann, M.; Xu, J.H. Transition matrices for well-conditioned Markov chains. Linear Algebra Appl. 2007, 424, 118–131. [Google Scholar] [CrossRef]
- Lei, J.Z.; Wang, C.Y. On the reducibility of compartmental matrices. Comput. Biol. Med. 2008, 38, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.R.; Wang, Q.W.; Zhang, Y. A system of matrix equations over the quaternion algebra with applications. Algebra Colloq. 2017, 24, 233–253. [Google Scholar] [CrossRef]
- Savaş, E.; Mursaleen, M. Bézier type Kantorovich q-Baskakov operators via wavelets and some approximation properties. Bull. Iran. Math. Soc. 2023, 49, 68. [Google Scholar] [CrossRef]
- Santesso, P.; Valcher, M.E. On the zero pattern properties and asymptoti behavior of continuous-time positive system trajectories. Linear Algebra Appl. 2007, 425, 283–302. [Google Scholar] [CrossRef]
- Größ, J. A note on the general Hermitian solution to AXA* = B. Bull. Malays. Math. Soc. 1998, 21, 57–62. [Google Scholar]
- Größ, J. Nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B revisited. Linear Algebra Appl. 2000, 321, 123–129. [Google Scholar] [CrossRef]
- Gao, Z.H.; Wang, Q.W.; Xie, L.M. The (anti-)η-Hermitian solution to a novel system of matrix equations over the split quaternion algebra. Math. Meth. Appl. Sci. 2024, 47, 13896–13913. [Google Scholar] [CrossRef]
- Khatri, C.G.; Mitra, S.K. Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math. 1976, 31, 579–585. [Google Scholar] [CrossRef]
- Xu, Q.X. Common hermitian and positive solutions to the adjointable operator equations AX = C, XB = D. Linear Algebra Appl. 2008, 429, 1–11. [Google Scholar] [CrossRef]
- Ren, B.-Y.; Wang, Q.-W.; Chen, X.-Y. The η-Anti-Hermitian Solution to a System of Constrained Matrix Equations over the Generalized Segre Quaternion Algebra. Symmetry 2023, 15, 592. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.W.; Xie, L.M. The Hermitian solution to a new system of commutative quaternion matrix equations. Symmetry 2024, 16, 361. [Google Scholar] [CrossRef]
- Kösal, H.H.; Tosun, M. Commutative Quaternion Matrices. Adv. Appl. Clifford Algebr. 2014, 24, 769–779. [Google Scholar] [CrossRef]
- Zhang, F.Z. Matrix Theory: Basic Result and Techniques; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Yuan, S.F.; Wang, Q.W.; Yu, Y.B.; Tian, Y. On hermitian solutions of the split quaternion matrix equation axb + cxd = e. Adv. Appl. Clifford Algebras 2017, 27, 3235–3252. [Google Scholar] [CrossRef]
- Yuan, S.F.; Wang, Q.W. L-structured quaternion matrices and quaternion linear matrix equations. Linear Multilinear Algebra 2016, 64, 321–339. [Google Scholar] [CrossRef]
- Yuan, S.F.; Tian, Y.; Li, M.Z. On Hermitian solutions of the reduced biquaternion matrix equation (AXB, CXD) = (E, G). Linear Multilinear Algebra 2018, 68, 1355–1373. [Google Scholar] [CrossRef]
- Xie, L.M.; Wang, Q.W. A system of matrix equations over the commutative quaternion ring. Filomat 2023, 37, 97–106. [Google Scholar] [CrossRef]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2003. [Google Scholar]
- Magnus, J.R. L-structured matrices and linear matrix equations. Linear Multilinear Algebra 1983, 14, 67–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.-Q.; Liu, L.-S.; Ma, X.-X.; Long, Q.-W. A System of Coupled Matrix Equations with an Application over the Commutative Quaternion Ring. Symmetry 2025, 17, 619. https://doi.org/10.3390/sym17040619
Chen X-Q, Liu L-S, Ma X-X, Long Q-W. A System of Coupled Matrix Equations with an Application over the Commutative Quaternion Ring. Symmetry. 2025; 17(4):619. https://doi.org/10.3390/sym17040619
Chicago/Turabian StyleChen, Xiao-Quan, Long-Sheng Liu, Xiao-Xiao Ma, and Qian-Wen Long. 2025. "A System of Coupled Matrix Equations with an Application over the Commutative Quaternion Ring" Symmetry 17, no. 4: 619. https://doi.org/10.3390/sym17040619
APA StyleChen, X.-Q., Liu, L.-S., Ma, X.-X., & Long, Q.-W. (2025). A System of Coupled Matrix Equations with an Application over the Commutative Quaternion Ring. Symmetry, 17(4), 619. https://doi.org/10.3390/sym17040619