Spin Wave Chiral Scattering by Skyrmion Lattice in Ferromagnetic Nanotubes
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roßler, U.K.; Bogdanov, A.N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801. [Google Scholar] [CrossRef]
- Muhlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Munzer, W.; Neubauer, A.; Adams, T.; Mühlbauer, C.; Franz, F.; Jonietz, R.; Böni, P.; Pedersen, B.; Schmidt, M.; Rosch, A.; et al. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B 2010, 81, 041203. [Google Scholar] [CrossRef]
- Yu, X.Z.; Onose, Y.; Kanazawa, N.; Park, J.H.; Han, J.H.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Derras-Chouk, A.; Chudnovsky, E.M.; Garanin, D.A. Dynamics of the collapse of a ferromagnetic skyrmion in a centrosymmetric lattice. Phys. Rev. B 2022, 105, 134432. [Google Scholar] [CrossRef]
- Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156. [Google Scholar] [CrossRef]
- Yu, X.Z.; Kanazawa, N.; Zhang, W.Z.; Nagai, T.; Hara, T.; Kimoto, K.; Matsui, Y.; Onose, Y.; Tokura, Y. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 2012, 3, 988. [Google Scholar] [CrossRef]
- Iwasaki, J.; Mochizuki, M.; Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 2013, 8, 742–747. [Google Scholar] [CrossRef]
- Jonietz, F.; Mühlbauer, S.; Pfleiderer, C.; Neubauer, A.; Münzer, W.; Bauer, A.; Adams, T.; Georgii, R.; Böni, P.; Duine, R.A.; et al. Spin transfer torques in MnSi at ultralow current densities. Sciencce 2010, 330, 1648–1651. [Google Scholar] [CrossRef]
- Yang, S.H.; Ryu, K.S.; Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 2015, 10, 221–226. [Google Scholar] [CrossRef]
- Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef]
- Di, K.; Zhang, V.L.; Lim, H.S.; Ng, S.C.; Kuok, M.H.; Yu, J.; Yoon, J.; Qiu, X.; Yang, H. Direct Observation of the DzyaloshinskiiMoriya Interaction in a Pt/Co/Ni Film. Phys. Rev. Lett. 2015, 114, 047201. [Google Scholar] [CrossRef] [PubMed]
- Schütte, C.; Iwasaki, J.; Rosch, A.; Nagaosa, N. Inertia, diffusion, and dynamics of a driven skyrmion. Phys. Rev. B 2014, 90, 174434. [Google Scholar] [CrossRef]
- Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P.G.; Böni, P. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett. 2009, 102, 186602. [Google Scholar] [CrossRef]
- Yi, S.D.; Onoda, S.; Nagaosa, N.; Han, J.H. Skyrmions and anomalous Hall effect in a Dzyaloshinskii -Moriya spiral magnet. Phys. Rev. B 2009, 80, 054416. [Google Scholar] [CrossRef]
- Chen, G. Skyrmion Hall effect. Nat. Phys. 2017, 13, 112–113. [Google Scholar] [CrossRef]
- Zang, J.; Mostovoy, M.; Han, J.H.; Nagaosa, N. Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 2011, 107, 136804. [Google Scholar] [CrossRef]
- Peng, L.; Karube, K.; Taguchi, Y.; Nagaosa, N.; Tokura, Y.; Yu, X. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nat. Commun. 2021, 12, 6797. [Google Scholar] [CrossRef]
- Feilhauer, J.; Saha, S.; Tobik, J.; Zelent, M.; Heyderman, L.J.; Mruczkiewicz, M. Controlled motion of skyrmions in a magnetic antidot lattice. Phys. Rev. B 2020, 102, 184425. [Google Scholar] [CrossRef]
- Yang, S.; Wu, K.; Zhao, Y.; Liang, X.; Xia, J.; Zhou, Y.; Xing, X.; Zhou, Y. Inhibition of Skyrmion Hall Effect by a Stripe Domain Wall. Phys. Rev. Appl. 2022, 18, 024030. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.S.; Wang, C.; Yang, H.; Cao, Y.; Yan, P. Current-induced skyrmion motion on magnetic nanotubes. J. Phys. D Appl. Phys. 2019, 52, 225001. [Google Scholar] [CrossRef]
- Wang, W.; Hu, P.; Kong, L.; Song, D.; Du, H. Magnetic skyrmion Walker breakdown in cylindrical nanotubes. Phys. Rev. B 2023, 107, 134407. [Google Scholar] [CrossRef]
- Bao, B.; Yang, M.; Yan, M. Asymmetric motion of magnetic skyrmions in ferromagnetic nanotubes induced by a magnetic field. Symmetry 2022, 14, 1195. [Google Scholar] [CrossRef]
- Holanda, J. Analyzing the magnetic interactions in nanostructures that are candidates for applications in spintronics. J. Phys. D Appl. Phys. 2021, 54, 245004. [Google Scholar] [CrossRef]
- Jamali, M.; Kwon, J.H.; Seo, S.M.; Lee, J.; Yang, H. Spin wave nonreciprocity for logic device applications. Sci. Rep. 2013, 3, 3160. [Google Scholar] [CrossRef]
- Chumak, A.V.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453–461. [Google Scholar] [CrossRef]
- Cornelissen, L.J.; Liu, J.; Duine, R.A.; Ben Youssef, J.; van Wees, B.J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 2015, 11, 1022–1026. [Google Scholar] [CrossRef]
- Liu, C.P.; Chen, J.L.; Liu, T.; Heimbach, F.; Yu, H.M.; Xiao, Y.; Hu, J.F.; Liu, M.C.; Chang, H.C.; Stueckler, T.; et al. Long-distance propagation of short-wavelength spin waves. Nat. Commun. 2018, 9, 738. [Google Scholar] [CrossRef]
- Chumak, A.V.; Serga, A.A.; Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 2014, 5, 4700. [Google Scholar] [CrossRef]
- Zhang, X.; Ezawa, M.; Xiao, D.; Zhao, G.P.; Liu, Y.; Zhou, Y. All-magnetic control of skyrmions in nanowires by a spin wave. Nanotechnology 2015, 26, 225701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Müller, J.; Xia, J.; Garst, M.; Liu, X.; Zhou, Y. Motion of skyrmions in nanowires driven by magnonic momentum-transfer forces. New J. Phys. 2017, 19, 065001. [Google Scholar] [CrossRef]
- Bo, L.; Hu, C.; Kong, L.; Ji, L.; Li, Y.; Zhang, J.; Zhao, R.; Zhang, X. Velocity increase of skyrmion motion by constructing wedge nanotracks. J. Magn. Magn. Mater. 2022, 546, 168877. [Google Scholar] [CrossRef]
- Schütte, C.; Garst, M. Magnon-skyrmion scattering in chiral magnets. Phys. Rev. B 2014, 90, 094423. [Google Scholar] [CrossRef]
- Iwasaki, J.; Beekman, A.J.; Nagaosa, N. Theory of magnon-skyrmion scattering in chiral magnets. Phys. Rev. B 2014, 89, 064412. [Google Scholar] [CrossRef]
- Ma, X.; Ai, X.; Yang, X.; Cai, M.; Shim, J.; Piao, H. Gyromotion of skyrmion along the nanofilm edge driven by spin waves. J. Magn. Magn. Mater. 2023, 581, 170665. [Google Scholar] [CrossRef]
- Otálora, J.A.; Yan, M.; Schultheiss, H.; Hertel, R.; Kákay, A. Curvature-Induced Asymmetric Spin-Wave Dispersion. Phys. Rev. Lett. 2016, 117, 227203. [Google Scholar] [CrossRef]
- Otálora, J.A.; Yan, M.; Schultheiss, H.; Hertel, R.; Kákay, A. Asymmetric spin-wave dispersion in ferromagnetic nanotubes induced by surface curvature. Phys. Rev. B 2017, 95, 184415. [Google Scholar] [CrossRef]
- Yang, M.; Yin, B.; Li, Z.; Zeng, X.; Yan, M. magnonic activity of ferromagnetic nanocylinders. Phys. Rev. B 2021, 103, 094404. [Google Scholar] [CrossRef]
- Yang, M.; Zeng, X.; Yan, M. Magnonic activity of circularly magnetized ferromagnetic nanotubes induced by dzyalonshinskii-moriya interaction. Symmetry 2022, 14, 1771. [Google Scholar] [CrossRef]
- Slonczewski, J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7. [Google Scholar] [CrossRef]
- Zare, M. Resonance spin-transfer torque in ferromagnetic/normal-metal/ferromagnetic spin-valve structure of topological insulators. J. Magn. Magn. Mater. 2019, 492, 165605. [Google Scholar] [CrossRef]
- Gilbert, T.L. A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev. 1955, 100, 1243. [Google Scholar]
- Zhang, S.; Li, Z. Roles of Nonequilibrium Conduction Electrons on the Magnetization Dynamics of Ferromagnets. Phys. Rev. Lett. 2004, 93, 127204. [Google Scholar] [CrossRef] [PubMed]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef]
- Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839–844. [Google Scholar] [CrossRef]
- Xie, K.; Sang, H. Three layers of skyrmions in the magnetic triple-layer structure without the Dzyaloshinsky-Moriya interaction. J. Appl. Phys. 2014, 116, 223901. [Google Scholar] [CrossRef]
- Holanda, J.; Campos, C.L.A.V.; Franca, C.A.; Padrón-Hernández, E. Effective surface anisotropy in polycrystalline ferromagnetic nanowires. J. Alloys Compd. 2014, 617, 639–641. [Google Scholar] [CrossRef]
- Abeed, M.A.; Sahoo, S.; Winters, D.; Barman, A.; Bandyopadhyay, S. The effect of material defects on resonant spin wave modes in a nanomagnet. Sci. Rep. 2019, 9, 16635. [Google Scholar] [CrossRef]
- Yan, P.; Kamra, A.; Cao, Y.; Bauer, G. Angular and linear momentum of excited ferromagnets. Phys. Rev. B 2013, 88, 144413. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, H.; Li, Z.; Wang, Z.; Zhang, H.; Cao, Y.; Yan, P. Twisted Magnon as a Magnetic Tweezer. Phys. Rev. Lett. 2020, 124, 217204. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Fan, M.; Zeng, X.; Yan, M. Spin Wave Chiral Scattering by Skyrmion Lattice in Ferromagnetic Nanotubes. Symmetry 2024, 16, 1336. https://doi.org/10.3390/sym16101336
Li N, Fan M, Zeng X, Yan M. Spin Wave Chiral Scattering by Skyrmion Lattice in Ferromagnetic Nanotubes. Symmetry. 2024; 16(10):1336. https://doi.org/10.3390/sym16101336
Chicago/Turabian StyleLi, Na, Mingming Fan, Xiaoyan Zeng, and Ming Yan. 2024. "Spin Wave Chiral Scattering by Skyrmion Lattice in Ferromagnetic Nanotubes" Symmetry 16, no. 10: 1336. https://doi.org/10.3390/sym16101336
APA StyleLi, N., Fan, M., Zeng, X., & Yan, M. (2024). Spin Wave Chiral Scattering by Skyrmion Lattice in Ferromagnetic Nanotubes. Symmetry, 16(10), 1336. https://doi.org/10.3390/sym16101336