Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (442)

Search Parameters:
Keywords = spin waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13695 KB  
Article
InGaN Laser Diode with Spin-on-Glass Isolation Fabricated by Planarization and Etch-Back Process
by Katarzyna Piotrowska-Wolińska, Szymon Grzanka, Łucja Marona, Krzysztof Gibasiewicz, Anna Kafar and Piotr Perlin
Micromachines 2026, 17(2), 142; https://doi.org/10.3390/mi17020142 - 23 Jan 2026
Abstract
We report on the fabrication and characterization of InGaN-based ridge-waveguide laser diodes employing spin-on-glass (SOG) as the insulation and planarization layer. In contrast to conventional silicon dioxide (SiO2) isolation deposited by PECVD, the SOG approach provides improved surface planarity, reduced processing [...] Read more.
We report on the fabrication and characterization of InGaN-based ridge-waveguide laser diodes employing spin-on-glass (SOG) as the insulation and planarization layer. In contrast to conventional silicon dioxide (SiO2) isolation deposited by PECVD, the SOG approach provides improved surface planarity, reduced processing complexity, and lower fabrication cost. The laser structures were grown on GaN substrates by MOCVD, with the active region consisting of In0.11Ga0.89N quantum wells. Following ridge formation and SOG deposition, an etch-back process was used to form the electrical contacts. We have demonstrated the formation of high-quality insulating surfaces with strong adhesion to the ridge sidewalls. When using a Ni protective layer, the fabricated devices exhibited favorable electrical and optical characteristics and achieved stable laser operation under both pulsed and continuous-wave conditions. These results indicate that the SOG-based insulation process represents a promising alternative for the scalable and cost-effective fabrication of InGaN laser diodes targeting advanced photonic applications. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

16 pages, 12349 KB  
Article
Pb-Apatite Framework as a Generator of Novel Flat-Band CuO-Based Physics
by Rafał Kurleto, Stephan Lany, Dimitar Pashov, Swagata Acharya, Mark van Schilfgaarde and Daniel S. Dessau
Crystals 2026, 16(1), 74; https://doi.org/10.3390/cryst16010074 (registering DOI) - 22 Jan 2026
Abstract
Based upon density functional theory (DFT) calculations, we present the basic electronic structure of CuPb9(PO4)6O (Cu-doped lead apatite, aka LK-99), in two scenarios: (1) where the structure is constrained to the P3 symmetry and (2) where no [...] Read more.
Based upon density functional theory (DFT) calculations, we present the basic electronic structure of CuPb9(PO4)6O (Cu-doped lead apatite, aka LK-99), in two scenarios: (1) where the structure is constrained to the P3 symmetry and (2) where no symmetry is imposed. At the DFT level, the former is predicted to be metallic while the latter is found to be a charge-transfer insulator. In both cases the filling of these states is nominally d9, consistent with the standard Cu2+ valence state, and Cu with a local magnetic moment of order 0.7 μB. In the metallic case we find these states to be unusually flat (∼0.2 eV dispersion), giving a very high density of electronic states (DOS) at the Fermi level that we argue can be a host for novel electronic physics. The flatness of the bands is the likely origin of symmetry-lowering gapping possibilities that would remove the spectral weight from EF. Motivated by some initial experimental observations of metallic or semiconducting behavior, we propose that disorder (likely structural) is responsible for closing the gap. Here, we consider a variety of possibilities that could possibly close the charge-transfer gap but limit consideration to kinds of disorder that preserve electron count. Of the possible kinds we considered (spin disorder, O populating vacancy sites, and Cu on less energetically favorable Pb sites), the local Cu moment, and consequently the charge-transfer gap, remains robust. We conclude that disorder responsible for metallic behavior entails some kind of doping where the electron count changes. Further, we claim that the emergence of the flat bands should be due to weak wave function overlap between the orbitals on Cu and O sites, owing to the directional character of the constituent orbitals. Therefore, finding an appropriate host structure for minimizing hybridization between Cu and O while allowing them to still weakly interact should be a promising route for generating flat bands at EF which can lead to interesting electronic phenomena, regardless of whether LK-99 is a superconductor. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3259 KB  
Article
Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface
by Xiaoming Wang, Bo Cheng, Yuxiao Zou, Guofeng Song, Kunpeng Zhai and Fuchun Sun
Photonics 2026, 13(1), 87; https://doi.org/10.3390/photonics13010087 - 19 Jan 2026
Viewed by 35
Abstract
Vertical cavity surface emitting lasers (VCSELs) have shown great potential in high-speed communication, quantum information processing, and 3D sensing due to their excellent beam quality and low power consumption. However, generating high-purity and controllable circularly polarized light usually requires external optical components such [...] Read more.
Vertical cavity surface emitting lasers (VCSELs) have shown great potential in high-speed communication, quantum information processing, and 3D sensing due to their excellent beam quality and low power consumption. However, generating high-purity and controllable circularly polarized light usually requires external optical components such as quarter-wave plates, which undoubtedly increases system complexity and volume, hindering chip-level integration. To address this issue, we propose a monolithic integration scheme that directly integrates a custom-designed double-layer asymmetric metasurface onto the upper distributed Bragg reflector of a chiral VCSEL. This metasurface consists of a rotated GaAs elliptical nanocolumn array and an anisotropic grating above it. By precisely controlling the relative orientation between the two, the in-plane symmetry of the structure is effectively broken, introducing a significant optical chirality response at a wavelength of 1550 nm. Numerical simulations show that this structure can achieve a near 100% high reflectivity for the left circularly polarized light (LCP), while suppressing the reflectivity of the right circularly polarized light (RCP) to approximately 33%, thereby obtaining an efficient in-cavity circular polarization selection function. Based on this, the proposed VCSEL can directly emit high-purity RCP without any external polarization control components. This compact circularly polarized laser source provides a key solution for achieving the next generation of highly integrated photonic chips and will have a profound impact on frontier fields such as spin optics, secure communication, and chip-level quantum light sources. Full article
Show Figures

Figure 1

11 pages, 1072 KB  
Article
Effect of the Dzyaloshinskii–Moriya Interaction on Magnonic Activity in Ferromagnetic Nanotubes
by Mingming Yang and Ming Yan
Symmetry 2026, 18(1), 120; https://doi.org/10.3390/sym18010120 - 8 Jan 2026
Viewed by 138
Abstract
The magnonic activity refers to a chiral effect in the field of magnetization dynamics that exhibits a high degree of analogy to optical activity. It manifests as the azimuthal continuous rotation of standing-wave nodes in the cross-section of spin waves during propagation in [...] Read more.
The magnonic activity refers to a chiral effect in the field of magnetization dynamics that exhibits a high degree of analogy to optical activity. It manifests as the azimuthal continuous rotation of standing-wave nodes in the cross-section of spin waves during propagation in ferromagnetic nanowire waveguides. The study employs micromagnetic simulation methods to theoretically investigate the influence of the interfacial Dzyaloshinskii–Moriya interaction (iDMI) on the magnonic activity in longitudinally magnetized ferromagnetic nanotubes. The results demonstrate that iDMI-induced chirality effectively controls the magnonic activity’s rotatory power, which relies on the values of the iDMI constant D (from 0.5 mJ/m2 to 1 mJ/m2). Additionally, nanotube thickness variations (from 3 nm to 15 nm) alter effective curvature, further influencing the rotatory power of the magnonic activity. Numerical simulations and semi-analytical calculations show excellent agreement, providing a theoretical foundation for chiral spin-wave manipulation in 3D curved nanostructures. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Condensed Matter Physics)
Show Figures

Figure 1

13 pages, 8549 KB  
Article
Mach–Zehnder Interferometer Electro-Optic Modulator Based on Thin-Film Lithium Niobate Valley Photonic Crystal
by Ying Yao, Hongming Fei, Xin Liu, Mingda Zhang, Pengqi Dong, Junjun Ren and Han Lin
Photonics 2026, 13(1), 33; https://doi.org/10.3390/photonics13010033 - 30 Dec 2025
Viewed by 476
Abstract
Thin-film lithium niobate (TFLN) electro-optic modulators (EOMs) offer distinct advantages, including high speed, broad bandwidth, and low power consumption. However, their large size hinders the density of integration, which trades off with the half-wave voltage. Photonic crystal (PC) structures can effectively reduce the [...] Read more.
Thin-film lithium niobate (TFLN) electro-optic modulators (EOMs) offer distinct advantages, including high speed, broad bandwidth, and low power consumption. However, their large size hinders the density of integration, which trades off with the half-wave voltage. Photonic crystal (PC) structures can effectively reduce the device footprint via the slow-light effect; however, they experience significant losses due to fabrication defects and sharp corners. Here, we theoretically demonstrate an ultracompact Mach–Zehnder interferometer (MZI) EOM based on a TFLN valley photonic crystal (VPC) structure. The design can achieve a high forward transmittance (>0.8) due to defect-immune unidirectional propagation in the VPC, enabled by the unique spin-valley locking effect. The EOM, with a small footprint of 21 μm × 17 μm, achieves an extinction ratio of 16.13 dB and a modulation depth of 80%. The design can be experimentally fabricated using current nanofabrication techniques, making it suitable for broad applications in optical communications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

18 pages, 6167 KB  
Article
Reconfigurable Millimeter-Wave Generation via Mutually Injected Spin-VCSELs
by Yichuan Xiong, Yu Huang, Pei Zhou, Kuenyao Lau and Nianqiang Li
Photonics 2026, 13(1), 28; https://doi.org/10.3390/photonics13010028 - 29 Dec 2025
Viewed by 200
Abstract
We propose a novel scheme for generating high-frequency millimeter-wave signals by exploiting period-one (P1) dynamics in a mutual injection configuration of two spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs). The frequency of the generated millimeter-wave signal is jointly determined by the birefringence rate of the [...] Read more.
We propose a novel scheme for generating high-frequency millimeter-wave signals by exploiting period-one (P1) dynamics in a mutual injection configuration of two spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs). The frequency of the generated millimeter-wave signal is jointly determined by the birefringence rate of the spin-VCSEL and the frequency detuning between the two lasers. By leveraging the complex dynamics of free-running spin-VCSELs, we explore the coupling of three distinct dynamic states: continuous-wave (CW) injected into CW, CW injected into P1 oscillation, and P1 oscillation injected into P1 oscillation. Our results reveal that these interactions not only enhance the tunability and frequency of the millimeter-wave output but also significantly reduce the linewidth, offering substantial advantages for reconfigurable photonic systems. This study demonstrates the remarkable potential of mutually injected spin-VCSELs for generating high-performance, tunable photonic millimeter waves and highlights their promising applications in advanced communication and radar systems. Full article
Show Figures

Figure 1

20 pages, 3528 KB  
Article
Sextuple-Q Spin States in Centrosymmetric Hexagonal Magnets
by Satoru Hayami
Magnetism 2026, 6(1), 4; https://doi.org/10.3390/magnetism6010004 - 29 Dec 2025
Viewed by 218
Abstract
We theoretically investigate multiple-Q instabilities in centrosymmetric hexagonal magnets, formulated as superpositions of independent six ordering wave vectors related by sixfold rotational and mirror symmetries. By employing a spin model that incorporates biquadratic interactions and an external magnetic field, we establish a [...] Read more.
We theoretically investigate multiple-Q instabilities in centrosymmetric hexagonal magnets, formulated as superpositions of independent six ordering wave vectors related by sixfold rotational and mirror symmetries. By employing a spin model that incorporates biquadratic interactions and an external magnetic field, we establish a comprehensive low-temperature phase diagram hosting single-Q, double-Q, triple-Q, and sextuple-Q states, as well as skyrmion crystals with topological charges of one and two. The field evolution of the magnetization, scalar spin chirality, and finite wave-vector magnetic amplitudes reveals a hierarchical buildup of multiple-Q order, accompanied by first-order transitions between topologically distinct and trivial phases. At large biquadratic coupling, all six symmetry-related ordering wave vectors coherently participate, giving rise to two sextuple-Q states under magnetic fields and to another spontaneous sextuple-Q state even at zero field. The latter zero-field sextuple-Q state represents a fully developed sixfold interference pattern stabilized solely by the biquadratic interaction, characterized by alternating skyrmion- and antiskyrmion-like cores with vanishing uniform scalar spin chirality. These findings establish a unified framework for understanding hierarchical multiple-Q ordering and demonstrate that the interplay between bilinear and biquadratic interactions under hexagonal symmetry provides a generic route to complex noncoplanar magnetism in centrosymmetric itinerant systems. Full article
Show Figures

Figure 1

16 pages, 1638 KB  
Article
Diversity of Optical Soliton Solutions of Akbota Models in the Application of Heisenberg Ferromagnet
by Nida Raees, Ali. H. Tedjani, Irfan Mahmood and Ejaz Hussain
Symmetry 2025, 17(12), 2149; https://doi.org/10.3390/sym17122149 - 13 Dec 2025
Viewed by 228
Abstract
This paper explores the integrability of the Akbota equation with various types of solitary wave solutions. This equation belongs to a class of Heisenberg ferromagnet-type models. The model captures the dynamics of interactions between atomic magnetic moments, as governed by Heisenberg ferromagnetism. To [...] Read more.
This paper explores the integrability of the Akbota equation with various types of solitary wave solutions. This equation belongs to a class of Heisenberg ferromagnet-type models. The model captures the dynamics of interactions between atomic magnetic moments, as governed by Heisenberg ferromagnetism. To reveal its further physical importance, we calculate more solutions with the applications of the logarithmic transformation, the M-shaped rational solution method, the periodic cross-rational solution technique, and the periodic cross-kink wave solution approach. These methods allow us to derive new analytical families of soliton solutions, highlighting the interplay of discrete and continuous symmetries that govern soliton formation and stability in Heisenberg-type systems. In contrast to earlier studies, our findings present notable advancements. These results hold potential significance for further exploration of similar frameworks in addressing nonlinear problems across applied sciences. The results highlight the intrinsic role of symmetry in the underlying nonlinear structure of the Akbota equation, where integrability and soliton formation are governed by continuous and discrete symmetry transformations. The derived solutions provide original insights into how symmetry-breaking parameters control soliton dynamics, and their novelty is verified through analytical and computational checks. The interplay between these symmetries and the magnetic spin dynamics of the Heisenberg ferromagnet demonstrates how symmetry-breaking parameters control the diversity and stability of optical solitons. Additionally, the outcomes contribute to a deeper understanding of fluid propagation and incompressible fluid behavior. The solutions obtained for the Akbota equation are original and, to the best of our knowledge, have not been previously reported. Several of these solutions are illustrated through 3-D, contour, and 2-D plots by using Mathematica software. The validity and accuracy of all solutions we present here are thoroughly verified. Full article
Show Figures

Figure 1

12 pages, 354 KB  
Article
The Dirac Equation in a Linear Potential and Quantized Electromagnetic Field: Spin–Rest Entanglement
by Yassine Chargui and Sultan Al-Harbi
Quantum Rep. 2025, 7(4), 63; https://doi.org/10.3390/quantum7040063 - 12 Dec 2025
Viewed by 432
Abstract
We derive the exact eigenfunctions and energy equation for a Dirac particle in a monochromatic quantized electromagnetic plane wave and a confining scalar linear potential. It is shown that the system’s energy spectrum exhibits a forbidden region that vanishes when the particle–field interaction [...] Read more.
We derive the exact eigenfunctions and energy equation for a Dirac particle in a monochromatic quantized electromagnetic plane wave and a confining scalar linear potential. It is shown that the system’s energy spectrum exhibits a forbidden region that vanishes when the particle–field interaction is switched off. We then analyze the effect of particle–field coupling on quantum entanglement between the particle’s spin and the remaining degrees of freedom. Our results show that the profile of the spin–rest entanglement, measured by negativity and Von Neumann entropy, follows the energy profile of the state: it is monotonic when the energy is monotonic, and non-monotonic otherwise. These results may provide insights into quantum correlations in Dirac-like systems describing low-energy excitations of graphene and trapped ions. Full article
Show Figures

Figure 1

57 pages, 640 KB  
Article
Geometric Origin of Quantum Waves from Finite Action
by Bin Li
Quantum Rep. 2025, 7(4), 61; https://doi.org/10.3390/quantum7040061 - 8 Dec 2025
Viewed by 534
Abstract
Quantum mechanics postulates wave–particle duality and assigns amplitudes of the form eiS/, yet no existing formulation explains why physical observables depend only on the phase of the action. Here we show that if the quantum of action [...] Read more.
Quantum mechanics postulates wave–particle duality and assigns amplitudes of the form eiS/, yet no existing formulation explains why physical observables depend only on the phase of the action. Here we show that if the quantum of action geom is finite, the classical action manifold R becomes compact under the identification SS+2πgeom, yielding a U(1) action space on which only modular action is observable. Wave interference then follows as a geometric necessity: a finite action quantum forces physical amplitudes to live on a circle, while the classical limit arises when the modular spacing 2πgeom becomes negligible compared with macroscopic actions. We formulate this as a compact-action theorem. Chronon Field Theory (ChFT) provides the physical origin of geom: its causal field Φμ carries a quantized symplectic flux ω=geom, making Planck’s constant a geometric topological invariant rather than an imposed parameter. Within this medium, the Real–Now–Front (RNF) supplies a local reconstruction rule that reproduces the structure of the Feynman path integral, the Schrödinger evolution, the Born rule, and macroscopic definiteness as consequences of geometric compatibility rather than supplemental postulates. Phenomenologically, identifying the electron as the minimal chronon soliton—carrying the fundamental unit of symplectic flux—links its spin, charge, and stability to topological properties of the chronon field, yielding concrete experimental signatures. Thus the compact-action/RNF framework provides a unified geometric origin for quantum interference, measurement, and matter, together with falsifiable predictions of ChFT. Full article
Show Figures

Figure 1

40 pages, 9996 KB  
Review
Optical Spin Angular Momentum: Properties, Topologies, Detection and Applications
by Shucen Liu, Xi Xie, Peng Shi and Yijie Shen
Nanomaterials 2025, 15(23), 1798; https://doi.org/10.3390/nano15231798 - 28 Nov 2025
Viewed by 868
Abstract
Spin angular momentum is a fundamental dynamical property of elementary particles and fields, playing a critical role in light–matter interactions. In optical studies, the optical spin angular momentum is closely linked to circular polarization. Research on the interaction between optical spin and matter [...] Read more.
Spin angular momentum is a fundamental dynamical property of elementary particles and fields, playing a critical role in light–matter interactions. In optical studies, the optical spin angular momentum is closely linked to circular polarization. Research on the interaction between optical spin and matter or structures has led to numerous novel optical phenomena and applications, giving rise to the emerging field of spin optics. Historically, researchers primarily focused on longitudinal optical spin aligned parallel to the mean wavevector. In recent years, investigations into the spin–orbit coupling properties of confined fields—such as focused beams, guided waves, and evanescent waves—have revealed a new class of optical spin oriented perpendicular to the mean wavevector, referred to as optical transverse spin. In the optical near-field, such transverse spins arise from spatial variations in the momentum density of confined electromagnetic waves, where strong coupling between spin and orbital angular momenta leads to various topological spin structures and properties. Several reviews on optical transverse spin have been published in recent years, systematically introducing its fundamental concepts and the configurations that generate it. In this review, we detail recent advances in spin optics from three perspectives: theory, experimental techniques, and applications, with a particular emphasis on the fundamental physics of transverse spin and the resulting topological structures and characteristics. The conceptual and theoretical framework of spin optics is expected to significantly support further exploration of optical spin-based applications in fields such as optics imaging, topological photonics, metrology, and quantum technologies. Furthermore, these principles can be extended to general classical wave systems, including fluidic, acoustic, and gravitational waves. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photonics, Plasmonics and Metasurfaces)
Show Figures

Figure 1

17 pages, 1336 KB  
Article
Transitions from Coplanar Double-Q to Noncoplanar Triple-Q States Induced by High-Harmonic Wave-Vector Interaction
by Satoru Hayami
Condens. Matter 2025, 10(4), 60; https://doi.org/10.3390/condmat10040060 - 28 Nov 2025
Viewed by 419
Abstract
We theoretically investigate topological transitions between coplanar and noncoplanar magnetic states in centrosymmetric itinerant magnets on a square lattice. A canonical effective spin model incorporating bilinear and biquadratic exchange interactions at finite wave vectors is analyzed to elucidate the emergence of multiple-Q [...] Read more.
We theoretically investigate topological transitions between coplanar and noncoplanar magnetic states in centrosymmetric itinerant magnets on a square lattice. A canonical effective spin model incorporating bilinear and biquadratic exchange interactions at finite wave vectors is analyzed to elucidate the emergence of multiple-Q magnetic orders. By taking into account high-harmonic wave-vector interactions, we demonstrate that a coplanar double-Q spin texture continuously evolves into a noncoplanar triple-Q state carrying a finite scalar spin chirality. The stability of these multiple-Q states is examined using simulated annealing as a function of the relative strengths of the high-harmonic coupling, the biquadratic interaction, and the external magnetic field. The resulting phase diagrams reveal a competition between double-Q and triple-Q states, where the noncoplanar triple-Q phase is stabilized through the cooperative effect of the high-harmonic and biquadratic interactions. Real-space spin textures, spin structure factors, and scalar spin chirality distributions are analyzed to characterize the distinct magnetic phases and the topological transitions connecting them. These findings provide a microscopic framework for understanding the emergence of noncoplanar magnetic textures driven by the interplay between two- and four-spin interactions in centrosymmetric itinerant magnets. Full article
Show Figures

Figure 1

24 pages, 1606 KB  
Article
Modified Fokas–Lenells Equation: Self-Consistent Sources and Soliton Solutions of the Spin and (2+1)-Dimensional Models
by Meruyert Zhassybayeva, Kuralay Yesmakhanova and Zhaidary Myrzakulova
Symmetry 2025, 17(11), 1961; https://doi.org/10.3390/sym17111961 - 14 Nov 2025
Viewed by 285
Abstract
Nonlinear evolution equations play a key role in modeling various physical processes, such as wave propagation in nonlinear optical and hydrodynamic media, as well as in the dynamics of plasma and quantum systems. In this paper, we study an integrable generalization of the [...] Read more.
Nonlinear evolution equations play a key role in modeling various physical processes, such as wave propagation in nonlinear optical and hydrodynamic media, as well as in the dynamics of plasma and quantum systems. In this paper, we study an integrable generalization of the nonlinear Schrödinger equation: the Fokas–Lenells (FL) equation. We derive a new (1+1)-dimensional FL equation with self-consistent sources, which enables modeling the interaction of solitons with external disturbances within the framework of integrable systems. For the frist time, we obtain, two distinct types of solutions for the spin system of the FL equation, namely, a traveling wave and a one-soliton solution, derived using the Darboux transformation (DT). We also construct exact one-soliton and two-soliton solutions for the (2+1)-dimensional FL equation using the DT. These results advance analytical methods in the theory of integrable nonlinear systems, including spin models widely used to describe magnetic, quantum, and soliton phenomena. We illustrate the dynamics of the solutions graphically. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

21 pages, 3742 KB  
Article
Stability of Higher-Order Skyrmion Crystals Under Competing Magnetic Anisotropies in D3d Systems
by Satoru Hayami
Crystals 2025, 15(11), 978; https://doi.org/10.3390/cryst15110978 - 13 Nov 2025
Viewed by 845
Abstract
We investigate the stability of higher-order skyrmion crystals with large topological charges in the presence of crystal-dependent magnetic anisotropies. Focusing on the competition between two types of bond-dependent anisotropy allowed by D3d crystalline symmetry on a two-dimensional triangular lattice, we systematically [...] Read more.
We investigate the stability of higher-order skyrmion crystals with large topological charges in the presence of crystal-dependent magnetic anisotropies. Focusing on the competition between two types of bond-dependent anisotropy allowed by D3d crystalline symmetry on a two-dimensional triangular lattice, we systematically construct a low-temperature magnetic phase diagram using simulated annealing. Our analysis reveals that the stability of the higher-order skyrmion crystal with skyrmion number of two is strongly controlled by the relative sign of the bond-dependent anisotropy to the D3d-type anisotropy: a positive anisotropy, which favors spin oscillations perpendicular to the ordering wave vector, enhances its stability, whereas a negative anisotropy, favoring oscillations parallel to the ordering wave vector, suppresses it and instead stabilizes a topologically trivial double-Q state. We further examine the field evolution of these phases under an out-of-plane magnetic field and show that distinct types of skyrmion crystals with the skyrmion number of one emerge in the intermediate-field regime. These results highlight that the competition between different magnetic anisotropies in crystalline systems is a key factor governing the stability of both zero-field and field-induced skyrmion crystals. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

10 pages, 875 KB  
Article
Hidden Momentum and the Absence of the Gravitational Spin Hall Effect in a Uniform Field
by Andrzej Czarnecki and Ting Gao
Universe 2025, 11(11), 365; https://doi.org/10.3390/universe11110365 - 6 Nov 2025
Viewed by 362
Abstract
We re-examine the recent claim that a Dirac particle freely falling in a uniform gravitational field exhibits a spin-dependent transverse deflection (gravitational spin Hall effect). Using a circulating mass model, we show that hidden momentum arises in uniform fields when an object carries [...] Read more.
We re-examine the recent claim that a Dirac particle freely falling in a uniform gravitational field exhibits a spin-dependent transverse deflection (gravitational spin Hall effect). Using a circulating mass model, we show that hidden momentum arises in uniform fields when an object carries angular momentum. On the quantum side, we analyze the Dirac Hamiltonian in a uniform potential, construct its Foldy–Wouthuysen form, and evaluate the Heisenberg evolution of spin-polarized Gaussian packets. The state used previously, with p=0, is not at rest: because canonical and kinetic momenta differ, the packet carries a spin-dependent hidden momentum from t=0. Imposing x(0)=v(0)=0 requires a compensating spin-dependent p(0); with this preparation x(t)=0 to leading order in the gravitational acceleration g. Generalizing, an exact Foldy–Wouthuysen transformation (linear in g but to all orders in 1/c) shows that spin-dependent transverse motion begins no earlier than at O(g2) for a broad class of wave packets. We conclude that a uniform field does not produce a gravitational spin Hall effect at linear order; the previously reported drift stems from inconsistent initial states and misinterpreting canonical momentum. Full article
(This article belongs to the Special Issue Geometric Theories of Gravity)
Show Figures

Figure 1

Back to TopTop