Convex Families of q-Derivative Meromorphic Functions Involving the Polylogarithm Function
Abstract
1. Introduction
2. Main Results
2.1. Characteristics of Subclasses of
2.2. Convexity and Connectedness
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gerhardt, C.I.; Leibniz, G.W. (Eds.) Mathematische Schriften III/1; Georg Olms Verlag: Hildesheim, NY, USA, 1971; pp. 336–339. [Google Scholar]
- Lewin, L. Polylogarithms and Associated Functions; North-Holland: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Lewin, L. Structural Properties of Polylogarithms; American Mathematical Soc.: Ann Arbor, MI, USA, 1991; Volume 37, pp. 1–25. [Google Scholar]
- Goncharov, A.B. Polylogarithms in Arithmetic and Geometry. In Proceedings of the International Congress of Mathematicians, Zürich, Switzerland, 3–11 August 1994; pp. 374–387. [Google Scholar]
- Ponnusamy, S.; Sabapathy, S. Polylogarithms in the Theory of Univalent Functions. Results Math. 1996, 30, 136–150. [Google Scholar] [CrossRef]
- Oi, S. Gauss hypergeometric functions, multiple polylogarithms, and multiple zeta values. Publ. Res. Inst. Math. Sci. 2009, 45, 981–1009. [Google Scholar] [CrossRef]
- Shaqsi, K.A.; Darus, M. An operator defined by convolution involving the polylogarithms functions. J. Math. Stat. 2008, 4, 46. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Alhindi, K.R.; Darus, M. An investigation into the polylogarithm function and its associated class of meromorphic functions. Maejo Int. J. Sci. Technol. 2016, 10, 166–174. [Google Scholar]
- Alhindi, K.R.; Darus, M. Fekete-SzegÖ Inequalities for the Polylogarithm Function and Fractional Derivative Operator. Southeast Asian Bull. Math. 2018, 42, 307–314. [Google Scholar]
- Akça, H.; Benbourenane, J.; Eleuch, H. The q-derivative and differential equation. J. Phys. Conf. Ser. 2019, 1411, 12002. [Google Scholar] [CrossRef]
- Liang, S.; Samei, M.E. New approach to solutions of a class of singular fractional q- differential problem via quantum calculus. Adv. Differ. Equ. 2020, 2020, 14. [Google Scholar] [CrossRef]
- Jackson, F.H. XI.—On q-Functions and a certain Difference Operator. Trans. R. Soc. Edinburgh 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, D.O.; Fukuda, T.; Dunn, O.; Majors, E. On q-definite integrals. Quart. J. Pure Appl. Math 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. Int. J. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. On harmonic meromorphic functions associated with basic hypergeometric functions. Sci. World J. 2013, 2013, 164287. [Google Scholar]
- Aldweby, H.; Darus, M. A Subclass of Harmonic Univalent Functions Associated with -Analogue of Dziok-Srivastava Operator. ISRN Math. Anal. 2013, 2013, 382312. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. On the Fekete-SzegÖ problem for analytic functions defined by using symmetric q-derivative operator. Konuralp J. Math 2017, 5, 176–186. [Google Scholar]
- Dolgy, D.V.; Kim, D.S.; Kim, T.; Rim, S.H. Some identities of special q-polynomials. J. Inequalities Appl. 2014, 2014, 438. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Some classes of analytic and multivalent functions associated with q-derivative operators. Acta Univ. Sapientiae Math. 2014, 6, 5–23. [Google Scholar] [CrossRef]
- Bulut, S. Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator. Commun. Ser. A1 Math. Stat. 2017, 66, 108–114. [Google Scholar]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some Coefficient Inequalities of q-Starlike Functions Associated with Conic Domain Defined by q-Derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Salehian, S. New classes of bi- univalent functions by (p, q)-derivative operator. Honam Math. J. 2019, 41, 381–390. [Google Scholar]
- Aizenberg, L.A.; Leinartas, E.K. Multidimensional Hadamard Composition and Szegoe Kernels. Siberian Math. J. 1983, 24, 317–323. [Google Scholar] [CrossRef]
- Leinartas, E.K. Multidimensional Hadamard Composition and Sums with Linear Constraints on the Summation Indices. Sib. Math. J. 1989, 30, 250–255. [Google Scholar] [CrossRef]
- Sadykov, T. The Hadamard product of hypergeometric series. Bull. Sci. Math. 2002, 126, 31–43. [Google Scholar] [CrossRef]
- Alhindi, K.R.; Darus, M. A New Class of Meromorphic Functions Involving the Polylogarithm Function. J. Complex Anal. 2014, 2014, 864805. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhindi, K.R. Convex Families of q-Derivative Meromorphic Functions Involving the Polylogarithm Function. Symmetry 2023, 15, 1388. https://doi.org/10.3390/sym15071388
Alhindi KR. Convex Families of q-Derivative Meromorphic Functions Involving the Polylogarithm Function. Symmetry. 2023; 15(7):1388. https://doi.org/10.3390/sym15071388
Chicago/Turabian StyleAlhindi, Khadeejah Rasheed. 2023. "Convex Families of q-Derivative Meromorphic Functions Involving the Polylogarithm Function" Symmetry 15, no. 7: 1388. https://doi.org/10.3390/sym15071388
APA StyleAlhindi, K. R. (2023). Convex Families of q-Derivative Meromorphic Functions Involving the Polylogarithm Function. Symmetry, 15(7), 1388. https://doi.org/10.3390/sym15071388