Stability of Two Kinds of Discretization Schemes for Nonhomogeneous Fractional Cauchy Problem
Abstract
1. Introduction
2. Explicit and Implicit Schemes for the Approximation
3. Existence and Stability
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guidetti, D.; Karasözen, B.; Piskarev, S. Approximation of abstract differential equations. J. Math. Sci. 2004, 122, 3013–3054. [Google Scholar] [CrossRef]
- Li, M.; Morozov, V.; Piskarev, S. On the approximations of derivatives of integrated semigroups. J. Inverse Ill-Posed Probl. 2010, 18, 515–550. [Google Scholar] [CrossRef]
- Li, M.; Morozov, V.; Piskarev, S. On the approximations of derivatives of integrated semigroups II. J. Inverse Ill-Posed Probl. 2011, 19, 643–688. [Google Scholar] [CrossRef]
- Abdelaziz, N.H. On approximation by discrete semigroups. J. Approx. Theory 1993, 73, 253–269. [Google Scholar] [CrossRef]
- Abdelaziz, N.H.; Chernoff, P.R. Continuous and discrete semigroup approximations with applications to the Cauchy problem. J. Oper. Theory 1994, 32, 331–352. [Google Scholar]
- Ashyralyev, A.; Sobolevskii, P.E. Well-posedness of Parabolic Difference Equations. In Operator Theory; Springer: Basel, Switzerland; Boston, MA, USA; Berlin, Germany; Birkhäuser: Basel, Switzerland, 1994; Volume 69. [Google Scholar]
- Cao, Q.; Pastor, J.; Siegmund, S.; Piskarev, S. The approximations of parabolic equations at the vicinity of hyperbolic equilibrium point. Numer. Funct. Anal. Optim. 2014, 35, 1287–1307. [Google Scholar] [CrossRef]
- Piskarev, S. Differential Equations in Banach Space and Their Approximation; Moscow State University Publish House: Moscow, Russia, 2005. (In Russian) [Google Scholar]
- Vainikko, G. Approximative methods for nonlinear equations (two approaches to the convergence problem). Nonlinear Anal. 1978, 2, 647–687. [Google Scholar] [CrossRef]
- Alam, M.M.; Dubey, S. Strict Hölder regularity for fractional order abstract degenerate differential equations. Ann. Funct. Anal. 2022, 13, 1–29. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef]
- Bajlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, University Press Facilities, Eindhoven University of Technology, Eindhoven, The Netherlands, 2001. [Google Scholar]
- Fan, Z.; Dong, Q.; Li, G. Almost exponential stability and exponential stability of resolvent operator families. Semigroup Forum 2016, 93, 491–500. [Google Scholar] [CrossRef]
- Fan, Z. A short note on the solvability of impulsive fractional differential equations with Caputo derivatives. Appl. Math. Lett. 2014, 38, 14–19. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z. The finite difference approximation for a class of fractional sub-diffusions on a space unbounded domain. J. Comput. Phys. 2013, 236, 443–460. [Google Scholar] [CrossRef]
- He, J.W.; Zhou, Y. Hölder regularity for non-autonomous fractional evolution equations. Fract. Calc. Appl. Anal. 2022, 25, 378–407. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Li, K.; Peng, J.; Jia, J. Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 2012, 263, 476–510. [Google Scholar] [CrossRef]
- Liang, Y.; Shi, Y.; Fan, Z. Exact solutions and Hyers-Ulam stability of fractional equations with double delays. Fract. Calc. Appl. Anal. 2023, 26, 439–460. [Google Scholar] [CrossRef]
- Liu, L.; Fan, Z.; Li, G.; Piskarev, S. Maximal regularity for fractional Cauchy equation in Hölder space and its approximation. Comput. Methods Appl. Math. 2019, 19, 779–796. [Google Scholar] [CrossRef]
- Liu, L.B.; Liang, Z.; Long, G.; Liang, Y. Convergence analysis of a finite difference scheme for a Riemann-Liouville fractional derivative two-point boundary value problem on an adaptive grid. J. Comput. Appl. Math. 2020, 375, 112809. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Piskarev, S. Stability of difference schemes for fractional equations. Differ. Equ. 2015, 51, 904–924. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Piskarev, S. Approximation of semilinear fractional Cauchy problem. Comput. Methods Appl. Math. 2015, 15, 203–212. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Piskarev, S. The order of convergence of difference schemes for fractional equations. Numer. Funct. Anal. Optim. 2017, 38, 754–769. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Pastor, J.; Piskarev, S. On the approximation of fractional resolution families. Differ. Equ. 2014, 50, 927–937. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Ponce, R. Time discretization of fractional subdiffusion equations via fractional resolvent operators. Comput. Math. Appl. 2020, 80, 69–92. [Google Scholar] [CrossRef]
- Ponce, R. Well-posedness of second order differential equations with memory. Math. Nachr. 2022, 295, 2246–2264. [Google Scholar] [CrossRef]
- Prüss, J. Evolutionary Integral Equations and Applications; Birkhäuser: Basel, Switzerland; Berlin, Germany, 1993. [Google Scholar]
- Shi, Y.; Fan, Z.; Li, G. New explicit solutions and Hyers-Ulam stability of fractional delay differential equations. J. Yangzhou Univ. (Nat. Sci. Ed.) 2023, 26, 1–5+19. (In Chinese) [Google Scholar]
- Wang, R.N.; Chen, D.H.; Xiao, T.J. Abstract fractional Cauchy problems with almost sectorial operators. J. Diff. Equ. 2012, 252, 202–235. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.R.; Zhou, Y. Numerical analysis for time-fractional Schrödinger equation on two space dimensions. Adv. Differ. Equ. 2020, 2020, 53. [Google Scholar] [CrossRef]
- Zhu, S.; Fan, Z.; Li, G. Topological characteristics of solution sets for fractional evolution equations and applications to control systems. Topol. Methods Nonlinear Anal. 2019, 54, 177–202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Xu, L. Stability of Two Kinds of Discretization Schemes for Nonhomogeneous Fractional Cauchy Problem. Symmetry 2023, 15, 1355. https://doi.org/10.3390/sym15071355
Xu X, Xu L. Stability of Two Kinds of Discretization Schemes for Nonhomogeneous Fractional Cauchy Problem. Symmetry. 2023; 15(7):1355. https://doi.org/10.3390/sym15071355
Chicago/Turabian StyleXu, Xiaoping, and Lei Xu. 2023. "Stability of Two Kinds of Discretization Schemes for Nonhomogeneous Fractional Cauchy Problem" Symmetry 15, no. 7: 1355. https://doi.org/10.3390/sym15071355
APA StyleXu, X., & Xu, L. (2023). Stability of Two Kinds of Discretization Schemes for Nonhomogeneous Fractional Cauchy Problem. Symmetry, 15(7), 1355. https://doi.org/10.3390/sym15071355