An Observer-Based Type-3 Fuzzy Control for Non-Holonomic Wheeled Robots
Abstract
:1. Introduction
- A novel approach based on T3-FLSs is introduced to deal with non-holonomic constraints, unknown dynamics, and nonlinear disturbances.
- An observer is designed to detect the error, and its effect is eliminated by a developed terminal sliding mode controller (SMC).
- The modeling errors are considered in stability analysis based on the symmetric Lyapunov function.
- A simple training rule is developed for T3-FLSs.
2. Problem Formulation
3. Type-3 Fuzzy Estimator
- (1)
- The inputs are considered as .
- (2)
- Compute the memberships. In T3-FLSs, we need to compute the upper/lower memberships for the left and right side of fuzzy sets. Consider as jth FS for ; then, we have [38] (see Figure 4):
- (3)
- By considering the upper/lower memberships, the corresponding firing degree of rules are written as:
- (4)
- Considering the simple type-reduction, the output is given as:
4. Controller
5. Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Qiu, X.; Alattas, K.A.; Mohammadzadeh, A.; Ghaderpour, E. A New Fuzzy Robust Control for Linear Parameter-Varying Systems. Mathematics 2022, 10, 3319. [Google Scholar] [CrossRef]
- Chu, X.; Ng, R.; Wang, H.; Au, K.W.S. Feedback Control for Collision-Free Nonholonomic Vehicle Navigation on SE (2) With Null Space Circumvention. IEEE/ASME Trans. Mechatron. 2022, 27, 5594–5604. [Google Scholar] [CrossRef]
- Wang, Z.; He, D.; Zhang, Q.; Shi, J. Observer-based finite-time model reference adaptive state tracking control with actuator saturation. Int. J. Control Autom. Syst. 2020, 18, 2721–2733. [Google Scholar] [CrossRef]
- Sarrafan, N.; Zarei, J. Bounded observer-based consensus algorithm for robust finite-time tracking control of multiple nonholonomic chained-form systems. IEEE Trans. Autom. Control 2021, 66, 4933–4938. [Google Scholar] [CrossRef]
- Mathiyalagan, K.; Sangeetha, G. Finite-time stabilization of nonlinear time delay systems using LQR based sliding mode control. J. Frankl. Inst. 2019, 356, 3948–3964. [Google Scholar] [CrossRef]
- Rojas-Cubides, H.; Cortés-Romero, J.; Coral-Enriquez, H.; Rojas-Cubides, H. Sliding mode control assisted by GPI observers for tracking tasks of a nonlinear multivariable Twin-Rotor aerodynamical system. Control Eng. Pract. 2019, 88, 1–15. [Google Scholar] [CrossRef]
- Cen, H.; Singh, B.K. Nonholonomic wheeled mobile robot trajectory tracking control based on improved sliding mode variable structure. Wirel. Commun. Mob. Comput. 2021, 2021, 2974839. [Google Scholar] [CrossRef]
- Pai, M.C. Disturbance observer-based global sliding mode control for uncertain time-delay nonlinear systems. IETE J. Res. 2022, 68, 3331–3340. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, S.; He, D.; Zhu, W.; Xie, H.; Zheng, J. Trajectory-tracking control of Mecanum-wheeled omnidirectional mobile robots using adaptive integral terminal sliding mode. Comput. Electr. Eng. 2021, 96, 107500. [Google Scholar] [CrossRef]
- Naderolasli, A.; Shojaei, K.; Chatraei, A. Terminal sliding-mode disturbance observer-based finite-time adaptive-neural formation control of autonomous surface vessels under output constraints. Robotica 2023, 41, 236–258. [Google Scholar] [CrossRef]
- Tourajizadeh, H.; Sedigh, A.; Boomeri, V.; Rezaei, M. Design of a new steerable in-pipe inspection robot and its robust control in presence of pipeline flow. J. Mech. Eng. Sci. 2020, 14, 6993–7016. [Google Scholar] [CrossRef]
- Sanz, R.; García, P.; Díez, J.L.; Bondia, J. Artificial pancreas system with unannounced meals based on a disturbance observer and feedforward compensation. IEEE Trans. Control Syst. Technol. 2020, 29, 454–460. [Google Scholar] [CrossRef]
- Zhai, J.Y.; Song, Z.B. Adaptive sliding mode trajectory tracking control for wheeled mobile robots. Int. J. Control 2019, 92, 2255–2262. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Y. Global robust stabilization for nonholonomic systems with dynamic uncertainties. J. Frankl. Inst. 2020, 357, 1357–1377. [Google Scholar] [CrossRef]
- Hamdy, M.; Abd-Elhaleem, S.; Fkirin, M. Adaptive fuzzy predictive controller for a class of networked nonlinear systems with time-varying delay. IEEE Trans. Fuzzy Syst. 2017, 26, 2135–2144. [Google Scholar] [CrossRef]
- Vu, N.T.T.; Ong, L.X.; Trinh, N.H.; Pham, S.T.H. Robust adaptive controller for wheel mobile robot with disturbances and wheel slips. Int. J. Electr. Comput. Eng. (IJECE) 2021, 11, 336–346. [Google Scholar] [CrossRef]
- Gharajeh, M.S.; Jond, H.B. Hybrid global positioning system-adaptive neuro-fuzzy inference system based autonomous mobile robot navigation. Robot. Auton. Syst. 2020, 134, 103669. [Google Scholar] [CrossRef]
- Bi, M. Control of robot arm motion using trapezoid fuzzy two-degree-of-freedom PID algorithm. Symmetry 2020, 12, 665. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, F.; Castillo, O.; Cortés-Antonio, P. Generalized Type-2 Fuzzy Parameter Adaptation in the Marine Predator Algorithm for Fuzzy Controller Parameterization in Mobile Robots. Symmetry 2022, 14, 859. [Google Scholar] [CrossRef]
- Mancilla, A.; García-Valdez, M.; Castillo, O.; Merelo-Guervós, J.J. Optimal fuzzy controller design for autonomous robot path tracking using population-based metaheuristics. Symmetry 2022, 14, 202. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, T.; Dian, S.; Zeng, X.; Wang, H. Balance adjustment of power-line inspection robot using general type-2 fractional order fuzzy PID controller. Symmetry 2020, 12, 479. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Chen, Y.Y. Nonlinear Adaptive Fuzzy Control Design for Wheeled Mobile Robots with Using the Skew Symmetrical Property. Symmetry 2023, 15, 221. [Google Scholar] [CrossRef]
- Luviano-Cruz, D.; Garcia-Luna, F.; Pérez-Domínguez, L.; Gadi, S.K. Multi-agent reinforcement learning using linear fuzzy model applied to cooperative mobile robots. Symmetry 2018, 10, 461. [Google Scholar] [CrossRef] [Green Version]
- Almasri, E.; Uyguroğlu, M.K. Modeling and trajectory planning optimization for the symmetrical multiwheeled omnidirectional mobile robot. Symmetry 2021, 13, 1033. [Google Scholar] [CrossRef]
- Huang, H.; Xu, H.; Chen, F.; Zhang, C.; Mohammadzadeh, A. An Applied Type-3 Fuzzy Logic System: Practical Matlab Simulink and M-Files for Robotic, Control, and Modeling Applications. Symmetry 2023, 15, 475. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, C.; Mohammadzadeh, A. Type-3 fuzzy control of robotic manipulators. Symmetry 2023, 15, 483. [Google Scholar] [CrossRef]
- Hua, G.; Wang, F.; Zhang, J.; Alattas, K.A.; Mohammadzadeh, A.; The Vu, M. A New Type-3 Fuzzy Predictive Approach for Mobile Robots. Mathematics 2022, 10, 3186. [Google Scholar] [CrossRef]
- Peraza, C.; Ochoa, P.; Castillo, O.; Geem, Z.W. Interval-Type 3 Fuzzy Differential Evolution for Designing an Interval-Type 3 Fuzzy Controller of a Unicycle Mobile Robot. Mathematics 2022, 10, 3533. [Google Scholar] [CrossRef]
- Wang, J.; Yang, M.; Liang, F.; Feng, K.; Zhang, K.; Wang, Q. An algorithm for painting large objects based on a nine-axis UR5 robotic manipulator. Appl. Sci. 2022, 12, 7219. [Google Scholar] [CrossRef]
- Wang, B.; Shen, Y.; Li, N.; Zhang, Y.; Gao, Z. An adaptive sliding mode fault-tolerant control of a quadrotor unmanned aerial vehicle with actuator faults and model uncertainties. Int. J. Robust Nonlinear Control 2023. [Google Scholar] [CrossRef]
- Lu, C.; Gao, R.; Yin, L.; Zhang, B. Human-Robot Collaborative Scheduling in Energy-efficient Welding Shop. IEEE Trans. Ind. Inform. 2023. [Google Scholar] [CrossRef]
- Wang, J.; Liang, F.; Zhou, H.; Yang, M.; Wang, Q. Analysis of Position, pose and force decoupling characteristics of a 4-UPS/1-RPS parallel grinding robot. Symmetry 2022, 14, 825. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, L.; Su, Y.; Gao, G.; Liu, Y.; Na, Z.; Xu, Q.; Ding, T.; Xiao, L.; Li, L.; et al. A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy 2023, 105, 108013. [Google Scholar] [CrossRef]
- Gu, Q.; Tian, J.; Yang, B.; Liu, M.; Gu, B.; Yin, Z.; Yin, L.; Zheng, W. A novel architecture of a six degrees of freedom parallel platform. Electronics 2023, 12, 1774. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, D.; Han, L.; Gao, H.; Gao, Z.; Zhang, Y. Adaptive Fault-Tolerant Control of a Hybrid Canard Rotor/Wing UAV Under Transition Flight Subject to Actuator Faults and Model Uncertainties. IEEE Trans. Aerosp. Electron. Syst. 2023. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Zhang, W. A Composite Adaptive Fault-Tolerant Attitude Control for a Quadrotor UAV with Multiple Uncertainties. J. Syst. Sci. Complex. 2022, 35, 81–104. [Google Scholar] [CrossRef]
- Hamdy, M.; Ibrahim, A.; Abozalam, B.; Helmy, S. Maximum Power Point Tracking for Solar Photovoltaic System Based on Interval Type-3 Fuzzy Logic: Practical Validation. Electr. Power Compon. Syst. 2023, 51, 1009–1026. [Google Scholar] [CrossRef]
- Qasem, S.N.; Ahmadian, A.; Mohammadzadeh, A.; Rathinasamy, S.; Pahlevanzadeh, B. A type-3 logic fuzzy system: Optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size. Inf. Sci. 2021, 572, 424–443. [Google Scholar] [CrossRef]
- Wang, J.; Dong, H.; Chen, F.; Vu, M.T.; Shakibjoo, A.D.; Mohammadzadeh, A. Formation Control of Non-Holonomic Mobile Robots: Predictive Data-Driven Fuzzy Compensator. Mathematics 2023, 11, 1804. [Google Scholar] [CrossRef]
- Alkabaa, A.S.; Taylan, O.; Balubaid, M.; Zhang, C.; Mohammadzadeh, A. A practical type-3 Fuzzy control for mobile robots: Predictive and Boltzmann-based learning. Complex Intell. Syst. 2023, 1–14. [Google Scholar] [CrossRef]
- Abd-Elhaleem, S.; Soliman, M.; Hamdy, M. Modified repetitive periodic event-triggered control with equivalent-input-disturbance for linear systems subject to unknown disturbance. Int. J. Control 2022, 95, 1825–1837. [Google Scholar] [CrossRef]
- Yousef, H.A.; Hamdy, M.; Saleem, A.; Nashed, K.; Mesbah, M.; Shafiq, M. Enhanced adaptive control for a benchmark piezoelectric-actuated system via fuzzy approximation. Int. J. Adapt. Control Signal Process. 2019, 33, 1329–1343. [Google Scholar] [CrossRef]
- Luo, R.; Peng, Z.; Hu, J. On model identification based optimal control and it’s applications to multi-agent learning and control. Mathematics 2023, 11, 906. [Google Scholar] [CrossRef]
- Karaduman, B.; Tezel, B.T.; Challenger, M. Rational software agents with the BDI reasoning model for Cyber–Physical Systems. Eng. Appl. Artif. Intell. 2023, 123, 106478. [Google Scholar] [CrossRef]
- Xu, S.; Dai, H.; Feng, L.; Chen, H.; Chai, Y.; Zheng, W.X. Fault Estimation for Switched Interconnected Nonlinear Systems with External Disturbances via Variable Weighted Iterative Learning. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 2011–2015. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
k | 10 |
7 | |
9 | |
5 | |
5 | |
3 | |
3 | |
2 | |
5 | |
2 | |
3 | |
1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bie, H.; Li, P.; Chen, F.; Ghaderpour, E. An Observer-Based Type-3 Fuzzy Control for Non-Holonomic Wheeled Robots. Symmetry 2023, 15, 1354. https://doi.org/10.3390/sym15071354
Bie H, Li P, Chen F, Ghaderpour E. An Observer-Based Type-3 Fuzzy Control for Non-Holonomic Wheeled Robots. Symmetry. 2023; 15(7):1354. https://doi.org/10.3390/sym15071354
Chicago/Turabian StyleBie, Hongling, Pengyu Li, Fenghua Chen, and Ebrahim Ghaderpour. 2023. "An Observer-Based Type-3 Fuzzy Control for Non-Holonomic Wheeled Robots" Symmetry 15, no. 7: 1354. https://doi.org/10.3390/sym15071354
APA StyleBie, H., Li, P., Chen, F., & Ghaderpour, E. (2023). An Observer-Based Type-3 Fuzzy Control for Non-Holonomic Wheeled Robots. Symmetry, 15(7), 1354. https://doi.org/10.3390/sym15071354