Gaugino Masses from Misaligned Supersymmetry Breaking and R-Symmetry Breaking Spurions
Abstract
1. Introduction
2. Gaugino Masses from One Spurion
3. Gaugino Masses from Misaligned Spurions
4. Examples
4.1. The Model
4.2. The Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, S.P. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 1998, 18, 1–98. [Google Scholar]
- Giudice, G.F.; Rattazzi, R. Theories with gauge mediated supersymmetry breaking. Phys. Rept. 1999, 322, 419–499. [Google Scholar] [CrossRef]
- Meade, P.; Seiberg, N.; Shih, D. General Gauge Mediation. Prog. Theor. Phys. Suppl. 2009, 177, 143–158. [Google Scholar] [CrossRef]
- Kitano, R.; Ooguri, H.; Ookouchi, Y. Supersymmetry Breaking and Gauge Mediation. Ann. Rev. Nucl. Part. Sci. 2010, 60, 491–511. [Google Scholar] [CrossRef]
- Particle Data Group; Zyla, P.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Intriligator, K.A.; Seiberg, N. Lectures on supersymmetry breaking. Class. Quant. Grav. 2007, 24, S741–S772. [Google Scholar] [CrossRef]
- Wess, J.; Zumino, B. A Lagrangian Model Invariant Under Supergauge Transformations. Phys. Lett. B 1974, 49, 52–54. [Google Scholar] [CrossRef]
- Wess, J.; Zumino, B. Supergauge Invariant Extension of Quantum Electrodynamics. Nucl. Phys. B 1974, 78, 1–13. [Google Scholar] [CrossRef]
- Nelson, A.E.; Seiberg, N. R symmetry breaking versus supersymmetry breaking. Nucl. Phys. B 1994, 416, 46–62. [Google Scholar] [CrossRef]
- Sun, Z. Low energy supersymmetry from R-symmetries. Phys. Lett. B 2012, 712, 442–444. [Google Scholar] [CrossRef]
- Kang, Z.; Li, T.; Sun, Z. The Nelson-Seiberg theorem revised. J. High Energy Phys. 2013, 12, 93. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, Z.; Yang, L. A counterexample to the Nelson-Seiberg theorem. J. High Energy Phys. 2020, 10, 72. [Google Scholar] [CrossRef]
- Amariti, A.; Sauro, D. On the Nelson-Seiberg theorem: Generalizations and counter-examples. arXiv 2020, arXiv:2005.02076. [Google Scholar]
- Li, Z.; Sun, Z. The Nelson-Seiberg theorem generalized with nonpolynomial superpotentials. Adv. High Energy Phys. 2020, 2020, 3701943. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, Z.; Yang, L. A sufficient condition for counterexamples to the Nelson-Seiberg theorem. J. High Energy Phys. 2021, 2021, 175. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Z. Nonexistence of supersymmetry breaking counterexamples to the Nelson-Seiberg theorem. J. High Energy Phys. 2021, 10, 170. [Google Scholar] [CrossRef]
- Brister, J.; Sun, Z.; Yang, G. A formal notion of genericity and term-by-term vanishing superpotentials at supersymmetric vacua from R-symmetric Wess-Zumino models. J. High Energy Phys. 2021, 12, 199. [Google Scholar] [CrossRef]
- Brister, J.; Sun, Z. Novel counterexample to the Nelson-Seiberg theorem. Phys. Rev. D 2022, 106, 085009. [Google Scholar] [CrossRef]
- Brister, J.; Kou, S.; Li, Z.; Sun, Z. A brute-force search for R-symmetric Wess-Zumino models. arXiv 2022, arXiv:2204.05767. [Google Scholar]
- Sun, Z. Supersymmetry and R-symmetries in Wess-Zumino models: Properties and model dataset construction. arXiv 2022, arXiv:2207.13933. [Google Scholar]
- Ray, S. Some properties of meta-stable supersymmetry-breaking vacua in Wess-Zumino models. Phys. Lett. B 2006, 642, 137–141. [Google Scholar]
- Sun, Z. Continuous degeneracy of non-supersymmetric vacua. Nucl. Phys. B 2009, 815, 240–255. [Google Scholar] [CrossRef]
- Sun, Z. Vacuum statistics and parameter tuning for F-term supersymmetry breaking. J. High Energy Phys. 2011, 2011, 107. [Google Scholar] [CrossRef]
- Shih, D. Spontaneous R-symmetry breaking in O’Raifeartaigh models. J. High Energy Phys. 2008, 2008, 091. [Google Scholar] [CrossRef]
- Curtin, D.; Komargodski, Z.; Shih, D.; Tsai, Y. Spontaneous R-symmetry Breaking with Multiple Pseudomoduli. Phys. Rev. D 2012, 85, 125031. [Google Scholar] [CrossRef]
- Azeyanagi, T.; Kobayashi, T.; Ogasahara, A.; Yoshioka, K. Runaway, D term and R-symmetry Breaking. Phys. Rev. D 2012, 86, 095026. [Google Scholar]
- Vaknin, T. New phases in O’Raifeartaigh-like models and R-symmetry breaking. J. High Energy Phys. 2014, 2014, 4. [Google Scholar] [CrossRef]
- Carpenter, L.M.; Dine, M.; Festuccia, G.; Mason, J.D. Implementing General Gauge Mediation. Phys. Rev. D 2009, 79, 035002. [Google Scholar] [CrossRef]
- Sun, Z. Tree level spontaneous R-symmetry breaking in O’Raifeartaigh models. J. High Energy Phys. 2009, 2009, 002. [Google Scholar] [CrossRef]
- Liu, F.; Liu, M.; Sun, Z. No-go for tree-level R-symmetry breaking. Eur. Phys. J. C 2017, 77, 745. [Google Scholar] [CrossRef]
- Cheung, C.; Fitzpatrick, A.L.; Shih, D. (Extra)ordinary gauge mediation. J. High Energy Phys. 2008, 2008, 054. [Google Scholar] [CrossRef]
- Marques, D. Generalized messenger sector for gauge mediation of supersymmetry breaking and the soft spectrum. J. High Energy Phys. 2009, 2009, 038. [Google Scholar] [CrossRef]
- Giudice, G.F.; Rattazzi, R. Extracting supersymmetry breaking effects from wave function renormalization. Nucl. Phys. B 1998, 511, 25–44. [Google Scholar] [CrossRef]
- Komargodski, Z.; Shih, D. Notes on SUSY and R-Symmetry Breaking in Wess-Zumino Models. J. High Energy Phys. 2009, 2009, 093. [Google Scholar] [CrossRef]
- Abel, S.A.; Jaeckel, J.; Khoze, V.V. Gaugino versus Sfermion Masses in Gauge Mediation. Phys. Lett. B 2010, 682, 441–445. [Google Scholar] [CrossRef]
- Intriligator, K.A.; Seiberg, N.; Shih, D. Dynamical SUSY breaking in meta-stable vacua. J. High Energy Phys. 2006, 2006, 021. [Google Scholar] [CrossRef]
- Intriligator, K.A.; Seiberg, N.; Shih, D. Supersymmetry breaking, R-symmetry breaking and metastable vacua. J. High Energy Phys. 2007, 2007, 017. [Google Scholar] [CrossRef]
- Dreiner, H.K.; Haber, H.E.; Martin, S.P. Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry. Phys. Rept. 2010, 494, 1–196. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Addison-Wesley: Boston, MA, USA, 1995; ISBN 978-0-201-50397-5. [Google Scholar]
- Arkani-Hamed, N.; Dimopoulos, S. Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC. J. High Energy Phys. 2005, 2005, 073. [Google Scholar] [CrossRef]
- Giudice, G.F.; Romanino, A. Split supersymmetry. Nucl. Phys. B 2004, 699, 65–89, Erratum: Nucl. Phys. B 2005, 706, 487. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Giudice, G.F.; Romanino, A. Aspects of split supersymmetry. Nucl. Phys. B 2005, 709, 3–46. [Google Scholar] [CrossRef]
- Harigaya, K.; Ibe, M.; Yanagida, T.T. A Closer Look at Gaugino Masses in Pure Gravity Mediation Model/Minimal Split SUSY Model. J. High Energy Phys. 2013, 12, 016. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Yang, J.M. Split supersymmetry under GUT and current dark matter constraints. Eur. Phys. J. C 2014, 74, 3121. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Yang, J.M. A split SUSY model from SUSY GUT. J. High Energy Phys. 2015, 2015, 050. [Google Scholar] [CrossRef]
- Ahmed, W.; Mansha, A.; Li, T.; Raza, S.; Roy, J.; Xu, F.Z. The upper bounds on supersymmetry breaking scales in split supersymmetry from the Higgs mass and electroweak vacuum stability. Prog. Theor. Exp. Phys. 2020, 2020, 043B08. [Google Scholar] [CrossRef]
- Cheung, C.; Nomura, Y.; Thaler, J. Goldstini. J. High Energy Phys. 2010, 2010, 073. [Google Scholar] [CrossRef]
- Cheng, H.C.; Huang, W.C.; Low, I.; Menon, A. Goldstini as the decaying dark matter. J. High Energy Phys. 2011, 2011, 19. [Google Scholar] [CrossRef]
- Cao, J.; Du, X.; Li, Z.; Wang, F.; Zhang, Y. Explaining The XENON1T Excess With Light Goldstini Dark Matter. arXiv 2020, arXiv:2007.09981. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Li, T.; Ran, L.; Sun, Z. Gaugino Masses from Misaligned Supersymmetry Breaking and R-Symmetry Breaking Spurions. Symmetry 2023, 15, 566. https://doi.org/10.3390/sym15030566
Fu Y, Li T, Ran L, Sun Z. Gaugino Masses from Misaligned Supersymmetry Breaking and R-Symmetry Breaking Spurions. Symmetry. 2023; 15(3):566. https://doi.org/10.3390/sym15030566
Chicago/Turabian StyleFu, Yunhao, Tianjun Li, Longjie Ran, and Zheng Sun. 2023. "Gaugino Masses from Misaligned Supersymmetry Breaking and R-Symmetry Breaking Spurions" Symmetry 15, no. 3: 566. https://doi.org/10.3390/sym15030566
APA StyleFu, Y., Li, T., Ran, L., & Sun, Z. (2023). Gaugino Masses from Misaligned Supersymmetry Breaking and R-Symmetry Breaking Spurions. Symmetry, 15(3), 566. https://doi.org/10.3390/sym15030566