Metamaterial with Tunable Positive and Negative Hygrothermal Expansion Inspired by a Four-Fold Symmetrical Islamic Motif
Abstract
1. Introduction
2. Analysis
3. Results and Discussion
4. Conclusions and Recommendation
Funding
Data Availability Statement
Conflicts of Interest
Notations
Coefficients of moisture expansion for layers 1 and 2 of the bimaterial spiral spring. | |
Coefficients of thermal expansion for layers 1 and 2 of the bimaterial spiral spring. | |
Effective coefficients of moisture and thermal expansions of metamaterial. | |
Moisture concentration. | |
Moisture concentrations in layers 1 and 2 of the bimaterial spiral spring. | |
Strain | |
Moisture and thermal strains in directions. | |
Young’s moduli in layers 1 and 2 of the bimaterial spiral spring. | |
Thickness of bimaterial spiral spring. | |
Thicknesses of layers 1 and 2 of the bimaterial spiral spring. | |
Second moment area for layers 1 and 2 of the bimaterial spiral spring. | |
Arm length of Y-element. | |
Half-distance between centers of two adjacent pairs of Y-elements. | |
Dry mass. | |
Moisture mass. | |
Number of coils for the bimaterial spiral spring. | |
Positive integer. | |
Mean radius of curvature of bimaterial spiral spring. | |
Updated radius of curvature of bimaterial spiral spring. | |
Maximum radius of curvature of bimaterial spiral spring. | |
Minimum radius of curvature of bimaterial spiral spring. | |
Half-angular offset for a paired Y-elements. | |
Angle formed between inner and outer ends of the spiral spring. | |
Environmental temperature | |
Half-dimensions of a unit cell measured along the and axes. |
Abbreviations
CME | Coefficient of moisture expansion |
CTE | Coefficient of thermal expansion |
NC | Negative compressibility |
NME | Negative moisture expansion |
NTE | Negative thermal expansion |
References
- Lakes, R. Advances in negative Poisson’s ratio materials. Adv. Mater. 1993, 5, 293–296. [Google Scholar] [CrossRef]
- Alderson, A. A triumph of lateral thought. Chem. Ind. 1999, 10, 384–391. [Google Scholar]
- Yang, W.; Li, Z.M.; Shi, W.; Xie, B.H.; Yang, M.B. Review on auxetic materials. J. Mater. Sci. 2004, 39, 3269–3279. [Google Scholar] [CrossRef]
- Alderson, A.; Alderson, K.L. Auxetic materials. IMechE J. Aerosp. Eng. 2007, 221, 565–575. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H. A review on auxetic structures and polymeric materials. Sci. Res. Essays 2010, 5, 1052–1063. [Google Scholar]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef]
- Prawoto, Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 2012, 58, 140–153. [Google Scholar] [CrossRef]
- Critchley, R.; Corni, I.; Wharton, J.A.; Walsh, F.C.; Wood, R.J.K.; Stokes, K.R. A review of the manufacture, mechanical properties and potential applications of auxetic foams. Phys. Status Solidi B 2013, 250, 1963–1982. [Google Scholar] [CrossRef]
- Saxena, K.K.; Das, R.; Calius, E.P. Three decades of auxetics research − materials with negative Poisson’s ratio: A review. Adv. Eng. Mater. 2016, 18, 1847–1870. [Google Scholar] [CrossRef]
- Novak, N.; Vesenjak, M.; Ren, Z. Auxetic cellular materials—A review. Stroj. Vestn. J. Mech. Eng. 2016, 62, 485–493. [Google Scholar] [CrossRef]
- Jiang, J.W.; Kim, S.Y.; Park, H.S. Auxetic nanomaterials: Recent progress and future development. Appl. Phys. Rev. 2016, 3, 041101. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.Y. A perspective on auxetic nanomaterials. Nano Converg. 2017, 4, 10. [Google Scholar] [CrossRef]
- Lakes, R.S. Negative-Poisson’s-ratio materials: Auxetic solids. Annu. Rev. Mater. Res. 2017, 47, 63–81. [Google Scholar] [CrossRef]
- Lim, T.C. Analogies across auxetic models based on deformation mechanism. Phys. Status Solidi RRL 2017, 2016, 1600440. [Google Scholar] [CrossRef]
- Kolken, H.M.A.; Zadpoor, A.A. Auxetic mechanical metamaterials. RSC Adv. 2017, 7, 5111–5129. [Google Scholar] [CrossRef]
- Duncan, O.; Shepherd, T.; Moroney, C.; Foster, L.; Venkatraman, P.D.; Winwood, K.; Allen, T.; Alderson, A. Review of auxetic materials for sports applications: Expanding options in comfort and protection. Appl. Sci. 2018, 8, 941. [Google Scholar] [CrossRef]
- Ren, X.; Das, R.; Tran, P.; Ngo, T.D.; Xie, Y.M. Auxetic metamaterials and structures: A review. Smart Mater. Struct. 2018, 27, 023001. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. B Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
- Wang, Z.; Luan, C.; Liao, G.; Liu, J.; Yao, X.; Fu, J. Progress in auxetic mechanical metamaterials: Structures, characteristics, manufacturing methods, and applications. Adv. Eng. Mater. 2020, 22, 2000312. [Google Scholar] [CrossRef]
- Chu, C.N.; Saka, N.; Suh, N.P. Negative thermal expansion ceramics: A review. Mater. Sci. Eng. 1987, 95, 303–308. [Google Scholar] [CrossRef]
- Sleight, A.W. Thermal contraction. Endeavour 1995, 19, 64–68. [Google Scholar] [CrossRef]
- Sleight, A.W. Isotropic negative thermal expansion. Annu. Rev. Mater. Sci. 1998, 28, 29–43. [Google Scholar] [CrossRef]
- Barrera, G.D.; Bruno, J.A.O.; Barron, T.H.K.; Allan, N.L. Negative thermal expansion. J. Phys. Condens. Matter 2005, 17, R217–R252. [Google Scholar] [CrossRef]
- Grima, J.N.; Zammit, V.; Gatt, R. Negative thermal expansion. Xjenza 2006, 11, 17–29. [Google Scholar]
- Miller, W.; Smith, C.W.; Mackenzie, D.S.; Evans, K.E. Negative thermal expansion: A review. J. Mater. Sci. 2009, 44, 5441–5451. [Google Scholar] [CrossRef]
- Lind, C. Two decades of negative thermal expansion research: Where do we stand? Materials 2012, 5, 1125–1154. [Google Scholar] [CrossRef]
- Takenaka, K. Negative thermal expansion materials: Technological key for control of thermal expansion. Sci. Technol. Adv. Mater. 2012, 13, 013001. [Google Scholar] [CrossRef]
- Takenaka, K. Progress of research in negative thermal expansion materials: Paradigm shift in the control of thermal expansion. Front. Chem. 2018, 6, 267. [Google Scholar] [CrossRef]
- Chen, J.; Hu, L.; Deng, J.; Xing, X. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 2015, 44, 3522–3567. [Google Scholar] [CrossRef]
- Dove, M.T.; Fang, H. Negative thermal expansion and associated anomalous physical properties: Review of the lattice dynamics theoretical foundation. Rep. Prog. Phys. 2016, 79, 066503. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, Q.; Che, J.; Deng, J.; Lin, K.; Xing, X.R. Negative thermal expansion in molecular materials. Chem. Commun. 2018, 54, 5164–5176. [Google Scholar] [CrossRef]
- Mittal, R.; Gupta, M.K.; Chaplot, S.L. Phonons and anomalous thermal expansion behavior in crystalline solids. Prog. Mater. Sci. 2018, 92, 360–445. [Google Scholar] [CrossRef]
- Attfield, J.P. Mechanism and materials for NTE. Front. Chem. 2018, 6, 371. [Google Scholar] [CrossRef]
- Baughman, R.H.; Stafstrom, S.; Cui, C.; Dantas, S.O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522–1524. [Google Scholar] [CrossRef]
- Gatt, R.; Grima, J.N. Negative compressibility. Phys. Status Solidi RRL 2008, 2, 236–238. [Google Scholar] [CrossRef]
- Nicolaou, Z.G.; Motter, A.E. Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 2012, 11, 608–613. [Google Scholar] [CrossRef]
- Imre, A.R. Metamaterials with negative compressibility—A novel concept with a long history. Mater. Sci. Pol. 2014, 32, 126–129. [Google Scholar] [CrossRef]
- Cairns, A.B.; Goodwin, A.L. Negative linear compressibility. Phys. Chem. Chem. Phys. 2015, 17, 20449–20465. [Google Scholar] [CrossRef]
- Miller, W.; Evans, K.E.; Marmier, A. Negative linear compressibility in common materials. Appl. Phys. Lett. 2015, 106, 231903. [Google Scholar] [CrossRef]
- Lim, T.C. 2D structures exhibiting negative area compressibility. Phys. Status Solidi B 2017, 254, 1600682. [Google Scholar] [CrossRef]
- Barrett, D.G.; Bushnell, G.G.; Messersmith, P.B. Mechanically robust, negative-swelling, mussel-inspired tissue adhesives. Adv. Healthc. Mater. 2013, 2, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gu, T.; Shan, S.; Kang, S.H.; Weaver, J.C.; Bertoldi, K. Harnessing buckling to design architected materials that exhibit effective negative swelling. Adv. Mater. 2016, 28, 6619–6624. [Google Scholar] [CrossRef] [PubMed]
- Curatolo, M. Effective negative swelling of hydrogel-solid composites. Extrem. Mech. Lett. 2018, 25, 46–52. [Google Scholar] [CrossRef]
- Zhang, H.; Gou, X.; Wu, J.; Fang, D.; Zhang, Y. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Sci. Adv. 2018, 4, eaar8535. [Google Scholar] [CrossRef] [PubMed]
- Lakes, R.; Wojciechowski, K.W. Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi B 2008, 245, 545–551. [Google Scholar] [CrossRef]
- Lim, T.C. Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Phys. Statius Solidi B 2017, 254, 1600775. [Google Scholar] [CrossRef]
- Surjadi, J.U.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N.X.; Lu, Y. Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 2019, 21, 1800864. [Google Scholar] [CrossRef]
- Lim, T.C. Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions. Adv. Compos. Hybrid Mater. 2019, 2, 657–669. [Google Scholar] [CrossRef]
- Wu, W.; Hu, W.; Qian, G.; Liao, H.; Xu, X.; Berto, F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Mater. Des. 2019, 180, 107950. [Google Scholar] [CrossRef]
- Lim, T.C. Negative environmental expansion for interconnected array of rings and sliding rods. Phys. Status Solidi B 2019, 256, 1800032. [Google Scholar] [CrossRef]
- Grima-Cornish, J.N.; Grima, J.N.; Attard, D. A novel mechanical metamaterial exhibiting auxetic behavior and negative compressibility. Materials 2020, 13, 79. [Google Scholar] [CrossRef]
- Lim, T.C. Negative hygrothermal expansion of reinforced double arrowhead microstructure. Phys. Status Solidi B 2020, 257, 1800055. [Google Scholar] [CrossRef]
- Peng, X.L.; Bargmann, S. Tunable auxeticity and isotropic negative thermal expansion in three-dimensional lattice structures of cubic symmetry. Extrem. Mech. Lett. 2021, 44, 101201. [Google Scholar] [CrossRef]
- Rafsanjani, A.; Pasini, D. Multistable compliant auxetic metamaterials inspired by geometric patterns in Islamic arts. Bull. Am. Phys. Soc. 2016, 61, K40.00008. [Google Scholar]
- Rafsanjani, A.; Pasini, D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extrem. Mech. Lett. 2016, 9, 291–296. [Google Scholar] [CrossRef]
- Lim, T.C. Composite metamaterial square grids with sign-flipping expansion coefficients leading to a type of Islamic design. SN Appl. Sci. 2020, 2, 918. [Google Scholar] [CrossRef]
- Lim, T.C. Metacomposite structure with sign-changing coefficients of hygrothermal expansions inspired by Islamic motif. Compos. Struct. 2020, 251, 112660. [Google Scholar] [CrossRef]
- Lim, T.C. A perfect 2D auxetic sliding mechanism based on an Islamic geometric pattern. Eng. Res. Express 2021, 3, 015025. [Google Scholar] [CrossRef]
- Lim, T.C. Metamaterial honeycomb with sign-toggling expansion coefficients that manifests an Islamic mosaic pattern at the Alhambra Palace. Adv. Compos. Hybrid Mater. 2021, 4, 966–978. [Google Scholar] [CrossRef]
- Lim, T.C. Metamaterial with sign-toggling thermal expansivity inspired by Islamic motifs in Spain. J. Sci. Adv. Mater. Devices 2022, 7, 100401. [Google Scholar] [CrossRef]
- Hoberman, C. Radial Expansion/Retraction Truss Structure. U.S. Patent No. 5,024,031, 11 June 2014. [Google Scholar]
- Li, Y.; Chen, Y.; Li, T.; Cao, S.; Wang, L. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion. Compos. Struct. 2018, 189, 586–597. [Google Scholar] [CrossRef]
- Li, R.; Chen, H.; Choi, J.H. Auxetic two-dimensional nanostructures from DNA. Angew. Chem. 2021, 60, 7165–7173. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, H.; Choi, J.H. Topological assembly of a deployable Hoberman flight ring from DNA. Small 2021, 17, 2007069. [Google Scholar] [CrossRef] [PubMed]
- Cabras, L.; Brun, M. Auxetic two-dimensional lattices with Poisson’s ratio arbitrarily close to −1. Proc. R Soc. A 2014, 470, 20140538. [Google Scholar] [CrossRef]
- Cabras, L.; Brun, M. A class of auxetic three-dimensional lattices. J. Mech. Phys. Solids 2016, 91, 56–72. [Google Scholar] [CrossRef]
- Lim, T.C. An auxetic metamaterial with tunable positive to negative hygrothermal expansion by means of counter-rotating crosses. Phys. Status Solidi B 2021, 258, 2100137. [Google Scholar] [CrossRef]
- Lim, T.C. Adjustable positive and negative hygrothermal expansion metamaterial inspired by the Maltese cross. R. Soc. Open Sci. 2021, 8, 210593. [Google Scholar] [CrossRef]
- Lim, T.C. A Partially Auxetic Metamaterial Inspired by the Maltese Cross; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Cabras, L.; Brun, M.; Misseroni, D. 2019 Micro-structured medium with large isotropic negative thermal expansion. Proc. R. Soc. A 2022, 475, 20190468. [Google Scholar] [CrossRef]
- Lim, T.C. An auxetic system based on interconnected Y-elements inspired by Islamic geometric patterns. Symmetry 2021, 13, 865. [Google Scholar] [CrossRef]
- Lim, T.C. Aspect ratio and size effects of a metacomposite with interconnected Y-elements. J. Phys. Conf. Ser. 2021, 2047, 012029. [Google Scholar] [CrossRef]
- Lim, T.C. A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs. Compos. Struct. 2019, 226, 111256. [Google Scholar] [CrossRef]
- Timoshenko, S.P. Analysis of bi-metal thermostat. J. Opt. Soc. Am. 1925, 11, 233–255. [Google Scholar] [CrossRef]
- Adams, D.F.; Monib, M.M. Moisture expansion and thermal expansion coefficients of a polymer-matrix composite material. In Fibrous Composites in Structural Design; Lenoe, E.M., Oplinger, D.W., Burke, J.J., Eds.; Plenum Press: New York, NY, USA, 1980; pp. 819–830. [Google Scholar]
- Adamson, M.J. Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. J. Mater. Sci. 1980, 15, 1736–1745. [Google Scholar] [CrossRef]
- Cairns, D.S.; Adams, D.F. Moisture and thermal expansion properties of unidirectional composite materials and the epoxy matrix. In Environmental Effects on Composite Materials; Technomic Publishing Company: Lancaster, PA, USA, 1984; Volume 2, pp. 300–325. [Google Scholar]
- Weitsman, Y.J. Effects of fluids on polymeric composites—A review. In Comprehensive Composite Materials; Kelly, A., Zweben, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 2, pp. 369–401. [Google Scholar]
Category | Shape of Paired Rigid or High Stiffness Elements | NPR | NTE | NME | Refs. |
---|---|---|---|---|---|
Hoberman mechanism | Rigid linear elements | Yes | No | No | [61] |
Hoberman mechanism | Rigid linear elements with high CTE radial beams | NA | Yes | NA | [62] |
Hoberman mechanism | High stiffness of approximately linear elements in some DNA | Yes | No | No | [63,64] |
Equal armed crosses | Rigid equal armed cross elements | Yes | No | No | [65,66] |
Equal armed crosses | Rigid equal armed cross elements with high CTE connecting beams | NA | Yes | Yes | [67] |
Maltese crosses | Rigid equal armed cross elements with bimetallic spiral springs, hinge rods and connecting rods | NA | Yes | Yes | [68] |
Maltese crosses | Rigid equal armed cross elements with spiral springs, hinge rods and connecting rods | Yes | No | No | [69] |
Y-elements | Rigid Y-elements of equal angular spacing and high CTE connectors | NA | Yes | NA | [70] |
Y-elements | Rigid Y-elements of unequal angular spacing with spiral springs | Yes | No | No | [71,72] |
Y-elements | Rigid Y-elements of unequal angular spacing with bimetallic spiral springs | Yes | Yes | Yes | This paper |
Bimaterial Spiral Spring System | CTE of Bimaterial Layers | Young’s Modulus of Bimaterial Layers |
---|---|---|
(1) Tungsten (2) Silicon Carbide | ||
(1) Carbon (2) Steel | ||
(1) Brass (2) Titanium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, T.-C. Metamaterial with Tunable Positive and Negative Hygrothermal Expansion Inspired by a Four-Fold Symmetrical Islamic Motif. Symmetry 2023, 15, 462. https://doi.org/10.3390/sym15020462
Lim T-C. Metamaterial with Tunable Positive and Negative Hygrothermal Expansion Inspired by a Four-Fold Symmetrical Islamic Motif. Symmetry. 2023; 15(2):462. https://doi.org/10.3390/sym15020462
Chicago/Turabian StyleLim, Teik-Cheng. 2023. "Metamaterial with Tunable Positive and Negative Hygrothermal Expansion Inspired by a Four-Fold Symmetrical Islamic Motif" Symmetry 15, no. 2: 462. https://doi.org/10.3390/sym15020462
APA StyleLim, T.-C. (2023). Metamaterial with Tunable Positive and Negative Hygrothermal Expansion Inspired by a Four-Fold Symmetrical Islamic Motif. Symmetry, 15(2), 462. https://doi.org/10.3390/sym15020462