Next Article in Journal
Metamaterial with Tunable Positive and Negative Hygrothermal Expansion Inspired by a Four-Fold Symmetrical Islamic Motif
Previous Article in Journal
Potentials from the Polynomial Solutions of the Confluent Heun Equation
Previous Article in Special Issue
An Inexact Optimal Hybrid Conjugate Gradient Method for Solving Symmetric Nonlinear Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Equivalent Conditions of the Reverse Hardy-Type Integral Inequalities

by
Michael Th. Rassias
1,2,3,*,
Bicheng Yang
4 and
Andrei Raigorodskii
2,5,6,7
1
Department of Mathematics and Engineering Sciences, Hellenic Military Academy, 16673 Vari Attikis, Greece
2
Moscow Institute of Physics and Technology, Institutskiy per, d. 9, Dolgoprudny 141700, Russia
3
Institute for Advanced Study, Program in Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540, USA
4
Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China
5
The Department of Statistics and Random Processes of the Mechanics and Mathematics Faculty of Lomonosov, Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
6
Institute of Mathematics and Computer Science, Buryat State University, 24a Smolin St., Ulan-Ude 670000, Russia
7
Caucasus Mathematical Center, Adyghe State University, ul. Pervomayskaya, 208, Maykop 385000, Russia
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(2), 463; https://doi.org/10.3390/sym15020463
Submission received: 12 August 2022 / Revised: 5 September 2022 / Accepted: 6 February 2023 / Published: 9 February 2023
(This article belongs to the Special Issue Symmetry in Abstract Differential Equations)

Abstract

:
Hardy-type integral inequalities play a prominent role in the study of analytic inequalities, which are essential in mathematical analysis and its various applications, such as in the study of symmetry and asymmetry phenomena. In this paper, employing methods of real analysis and using weight functions, we investigate some equivalent conditions of two kinds of reverse Hardy-type integral inequalities with a particular non-homogeneous kernel. A few equivalent conditions of two kinds of reverse Hardy-type integral inequalities with a particular homogeneous kernel are deduced in the form of applications.

1. Introduction

In 1925, by introducing one pair of conjugate exponents ( p , q ) p > 1 , 1 p + 1 q = 1 , Hardy [1] established the following extension of Hilbert’s integral inequality:
For f ( x ) , g ( y ) 0 ,
0 < 0 f p ( x ) d x < and 0 < 0 g q ( y ) d y < ,
we have
0 0 f ( x ) g ( y ) x + y d x d y < π sin ( π / p ) 0 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q ,
with the best possible constant factor
π sin ( π / p ) .
Inequality (1) as well as Hilbert’s integral inequality (for p = q = 2 in (1), cf. [2]) have proved to be essential in analysis and its various applications (cf. [3,4]). In 1934, Hardy et al. established an extension of (1) with the kernel k 1 ( x , y ) , where k 1 ( x , y ) is a non-negative homogeneous function of degree 1 (cf. [3], Theorem 319). The following Hilbert-type integral inequality with the non-homogeneous kernel is proved:
If p > 1 , 1 p + 1 q = 1 , h ( u ) > 0 ,
ϕ ( σ ) = 0 h ( u ) u σ 1 d u R + ,
then
0 0 h ( x y ) f ( x ) g ( y ) d x d y < ϕ 1 p 0 x p 2 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q ,
with the best possible constant factor ϕ ( 1 p ) (cf. [3], Theorem 350).
In 1998, by introducing an independent parameter λ > 0 , Yang presented an extension of (1) for p = q = 2 with the kernel 1 ( x + y ) λ (cf. [5,6]). In 2004, by introducing another pair of conjugate exponents ( r , s ) ( r > 1 , 1 r + 1 s = 1 ) , Yang [7] proved an extension of (1) with the kernel 1 x λ + y λ ( λ > 0 ) . In 2005, Yang et al. [8] also established an extension of (1) and the result of [5]. Krnic et al. in [9,10,11,12,13,14] presented as well some extensions of (1).
In 2009, Yang proved the following extension of (3) (cf. [15,16]):
If λ 1 + λ 2 = λ R = ( , ) , k λ ( x , y ) is a non-negative homogeneous function of degree λ , satisfying
k λ ( u x , u y ) = u λ k λ ( x , y ) ( u , x , y > 0 ) ,
k ( λ 1 ) = 0 k λ ( u , 1 ) u λ 1 1 d u R + = ( 0 , ) ,
then for p > 1 , 1 p + 1 q = 1 , we have
0 0 k λ ( x , y ) f ( x ) g ( y ) d x d y < k ( λ 1 ) 0 x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p 0 y q ( 1 λ 2 ) 1 g q ( y ) d y 1 q ,
with the best possible constant factor k ( λ 1 ) . For 0 < p < 1 , 1 p + 1 q = 1 , we derive the reverse of (3). The following extension of (2) has been proved:
For p > 1 , 1 p + 1 q = 1 , we have
0 0 h ( x y ) f ( x ) g ( y ) d x d y < ϕ ( σ ) 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ ) 1 g q ( y ) d y 1 q ,
where the constant factor ϕ ( σ ) is the best possible. For 0 < p < 1 , 1 p + 1 q = 1 , we obtain the reverse of (4) (cf. [17]).
Some equivalent inequalities of (3) and (4) were considered in [16]. In 2013, Yang [17] also studied the equivalency between (3) and (4). In 2017, Hong [18] presented an equivalent condition between (3) and some parameters. Other similar works are provided in [19,20,21,22,23,24,25,26,27].
Remark 1
(cf. [17]). If h ( x y ) = 0 , for x y > 1 , then
ϕ ( σ ) = 0 1 h ( u ) u σ 1 d u = ϕ 1 ( σ ) R + ,
and the reverse of (4) reduces to the following reverse Hardy-type integral inequality with the non-homogeneous kernel:
0 g ( y ) 0 1 y h ( x y ) f ( x ) d x d y > ϕ 1 ( σ ) 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ ) 1 g q ( y ) d y 1 q ;
if h ( x y ) = 0 , for x y < 1 , then
ϕ ( σ ) = 1 h ( u ) u σ 1 d u = ϕ 2 ( σ ) R + ,
and the reverse of (4) reduces to the following reverse Hardy-type integral inequality with non-homogeneous kernel:
0 g ( y ) 1 y h ( x y ) f ( x ) d x d y > ϕ 2 ( σ ) 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ ) 1 g q ( y ) d y 1 q .
Hardy-type integral inequalities play a prominent role in the study of analytic inequalities, which are essential in mathematical analysis and its various applications in Physics and Engineering, such as in the study of symmetry and asymmetry phenomena (cf. [23,28]).
In the present work, employing methods of real analysis as well as using weight functions, we obtain a few equivalent conditions of (5) (resp. (6)) with a particular non-homogeneous kernel
( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α ( β > 1 ) .
Some equivalent conditions of two kinds of reverse Hardy-type integral inequalities with a particular homogeneous kernel are deduced in the form of applications. We also consider some interesting corollaries.

2. An Example and Two Lemmas

Example 1.
Setting
h ( u ) = ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α ( u > 0 ) ,
we then obtain that
h ( x y ) = ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α ,
and for β > 1 , σ , μ > α , σ + μ = λ R ,
k λ ( 1 ) ( σ ) : = 0 1 h ( u ) u σ 1 d u = 0 1 ( min { u , 1 } ) α ( ln u ) β ( max { u , 1 } ) λ + α u σ 1 d u = 0 1 u α + σ 1 ( ln u ) β d u = Γ ( β + 1 ) ( σ + α ) β + 1 R + ,
k λ ( 2 ) ( σ ) : = 1 h ( u ) u σ 1 d u = 1 ( min { u , 1 } ) α ( ln u ) β ( max { u , 1 } ) λ + α u σ 1 d u = 0 1 v α + μ 1 ( ln v ) β d v = Γ ( β + 1 ) ( μ + α ) β + 1 = k λ ( 1 ) ( μ ) R + ,
where
Γ ( η ) : = 0 v η 1 e v d v ( η > 0 )
stands for the gamma function (cf. [29]).
In the following, we assume that 0 < p < 1 ( q < 0 ) , 1 p + 1 q = 1 , β > 1 , λ , σ 1 R .
Lemma 1.
If σ > α and there exists a constant M 1 > 0 such that for any non-negative measurable functions f ( x ) , g ( y ) in ( 0 , ) the following inequality
0 g ( y ) 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x d y M 1 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q
holds true, then we have
σ 1 = σ and k λ ( 1 ) ( σ ) M 1 .
Proof. 
If σ 1 < σ , then for n N , we consider the following two functions
f n ( x ) : = x σ + 1 p n 1 , 0 < x 1 0 , x > 1 , g n ( y ) : = 0 , 0 < y < 1 y σ 1 1 q n 1 , y 1 ,
and obtain that
J 1 : = 0 x p ( 1 σ ) 1 f n p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g n q ( y ) d y 1 q = 0 1 x 1 n 1 d x 1 p 1 y 1 n 1 d y 1 q = n .
Setting u = x y , for 0 < p < 1 , we derive that
I 1 : = 0 g n ( y ) 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f n ( x ) d x d y = 1 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α x σ + 1 p n 1 d x y σ 1 1 q n 1 d y = 1 y ( σ 1 σ ) 1 n 1 d y 0 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ + 1 p n 1 d u 1 σ σ 1 + 1 n 0 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 d u k λ ( 1 ) ( σ ) σ σ 1 ,
and then by (7), it follows that
k λ ( 1 ) ( σ ) σ σ 1 I 1 M 1 J 1 = M 1 n .
By (8), letting n , in view of k λ ( 1 ) ( σ ) < , σ > σ 1 and M 1 > 0 , we get that
> k λ ( 1 ) ( σ ) σ σ 1 ,
which is a contradiction.
If σ 1 > σ , then for
n 1 | q | ( σ 1 σ ) ( n N ) ,
we consider the following two functions:
f ˜ n ( x ) : = 0 , 0 < x < 1 x σ 1 p n 1 , x 1 , g ˜ n ( y ) : = y σ 1 + 1 q n 1 , 0 < y 1 0 , y > 1 ,
and deduce that
J ˜ 1 : = 0 x p ( 1 σ ) 1 f ˜ n p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g ˜ n q ( y ) d y 1 q = 1 x 1 n 1 d x 1 p 0 1 y 1 n 1 d y 1 q = n .
Setting u = x y , in view of σ 1 + 1 q n σ ( q < 0 ) , we obtain
I ˜ 1 : = 0 f ˜ n ( x ) 0 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α g ˜ n ( y ) d y d x = 1 0 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α y σ 1 + 1 q n 1 d y x σ 1 p n 1 d x = 1 x ( σ σ 1 ) 1 n 1 d x 0 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 + 1 q n 1 d u 1 σ 1 σ + 1 n 0 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 d u k λ ( 1 ) ( σ ) σ 1 σ ,
and then by Fubini’s theorem (cf. [30]) and (7), we derive that
k 1 ( σ ) σ 1 σ I ˜ 1 = 0 g ˜ n ( y ) 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ˜ n ( x ) d x d y M 1 J ˜ 1 = M 1 n .
By (9), letting n , we obtain that
> k λ ( 1 ) ( σ ) σ 1 σ ,
which is a contradiction.
Hence, we conclude that σ 1 = σ .
For σ 1 = σ , we deduce that I 1 M 1 J 1 and then
k λ ( 1 ) ( σ ) = 0 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 d u 0 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ + 1 p n 1 d u M 1 .
This completes the proof of the lemma. □
Lemma 2.
If μ > α , σ = λ μ and there exists a constant M 2 > 0 such that for any non-negative measurable functions f ( x ) , g ( y ) in ( 0 , ) , the following inequality
0 g ( y ) 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x d y M 2 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q
holds true, then we have
σ 1 = σ and k λ ( 2 ) ( σ ) M 2 .
Proof. 
If σ 1 > σ , then for n N , we consider two functions f ˜ n ( x ) and g ˜ n ( y ) as in Lemma 1 and derive that
J ˜ 1 = 0 x p ( 1 σ ) 1 f ˜ n p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g ˜ n q ( y ) d y 1 q = n .
Setting u = x y , we obtain
I ˜ 2 : = 0 g ˜ n ( y ) 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ˜ n ( x ) d x d y = 0 1 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α x σ 1 p n 1 d x y σ 1 + 1 q n 1 d y = 0 1 y ( σ 1 σ ) + 1 n 1 d y 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 p n 1 d u k λ ( 2 ) ( σ ) σ 1 σ ,
and then by (10), it follows that
k λ ( 2 ) ( σ ) σ 1 σ I ˜ 2 M 2 J ˜ 1 = M 2 n .
By (11), letting n , we get that
> k λ ( 2 ) ( σ ) σ 1 σ ,
which is a contradiction.
If σ 1 < σ , then for
n 1 | q | ( σ σ 1 ) ( n N ) ,
we consider two functions f n ( x ) and g n ( y ) as in Lemma 1 and get that
J 1 = 0 x p ( 1 σ ) 1 f n p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g n q ( y ) d y 1 q = n .
Setting u = x y , we obtain
I 2 : = 0 f n ( x ) 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α g n ( y ) d y d x = 0 1 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α y σ 1 1 q n 1 d y x σ + 1 p n 1 d x = 0 1 x ( σ σ 1 ) + 1 n 1 d x 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 1 q n 1 d u 1 σ σ 1 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 d u = k λ ( 2 ) ( σ ) σ σ 1 ,
and then by Fubini’s theorem (cf. [30]) and (10), it follows that
k λ ( 2 ) ( σ ) σ σ 1 I 2 = 0 g n ( y ) 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f n ( x ) d x d y M 2 J 1 = M 2 n .
By (12), letting n , we derive that
> k λ ( 2 ) ( σ ) σ σ 1 ,
which is a contradiction.
Hence, we conclude that σ 1 = σ .
For σ 1 = σ , we deduce I ˜ 2 M 2 J ˜ 2 and then it follows that
k λ ( 2 ) ( σ ) = 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 d u 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 p n 1 M 2 .
This completes the proof of the lemma. □

3. Reverse Hardy-Type Inequalities of the First Kind

Theorem 1.
If σ > α , then the following conditions are equivalent:
(i) There exists a constant M 1 > 0 , such that for any f ( x ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < ,
we have the following reverse Hardy-type integral inequality of the first kind with the non-homogeneous kernel:
J : = 0 y p σ 1 1 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x p d y 1 p > M 1 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p .
(ii) There exists a constant M 1 > 0 , such that for any g ( y ) 0 satisfying
0 < 0 y q ( 1 σ 1 ) 1 g q ( y ) d y < ,
we have the following reverse Hardy-type integral inequality of the first kind with the non-homogeneous kernel:
0 x q σ 1 0 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α g ( y ) d y q d x 1 q > M 1 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q .
(iii) There exists a constant M 1 > 0 , such that for any f ( x ) , g ( y ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < and 0 < 0 y q ( 1 σ 1 ) 1 g q ( y ) d y < ,
we have the following inequality:
I : = 0 g ( y ) 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x d y > M 1 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q .
(iv) σ 1 = σ .
If Condition (iv) holds, then the constant M 1 = k λ ( 1 ) ( σ ) in (13)–(15) is the best possible.
Proof. 
( i ) ( i i ) . By the reverse Hölder inequality (cf. [31]), we have
I = 0 y σ 1 1 p 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x y 1 p σ 1 g ( y ) d y J 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q .
Then by (13), we obtain (14).
( i i ) ( i v ) . By Lemma 1, we have σ 1 = σ .
( i v ) ( i ) . Setting u = x y , we obtain the following weight function:
ω 1 ( σ , y ) : = y σ 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α x σ 1 d x = 0 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 d u = k λ ( 1 ) ( σ ) ( y > 0 ) .
By the reverse Hölder inequality with weight and (17), for y ( 0 , ) , we have
0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x p = 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α y ( σ 1 ) / p x ( σ 1 ) / q f ( x ) x ( σ 1 ) / q y ( σ 1 ) / p d x p 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α y σ 1 x ( σ 1 ) p / q f p ( x ) d x × 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α x σ 1 y ( σ 1 ) q / p d x p 1 = ω 1 ( σ , y ) y q ( σ 1 ) + 1 p 1 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α y σ 1 x ( σ 1 ) p / q f p ( x ) d x = ( k λ ( 1 ) ( σ ) ) p 1 y p σ + 1 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α y σ 1 x ( σ 1 ) p / q f p ( x ) d x .
If (18) obtains the form of equality for some y ( 0 , ) , then (cf. [31]) there exist constants A and B, such that they are not both zero, and
A y σ 1 x ( σ 1 ) p / q f p ( x ) = B x σ 1 y ( σ 1 ) q / p a . e . in R + .
We suppose that A 0 (otherwise B = A = 0 ). It follows that
x p ( 1 σ ) 1 f p ( x ) = y q ( 1 σ ) B A x a . e . in R + ,
which contradicts the fact that 0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < . Hence, (18) becomes a strict inequality.
For σ 1 = σ , by Fubini’s theorem (cf. [30]) and the above result, we have
J > ( k λ ( 1 ) ( σ ) ) 1 q 0 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α y σ 1 f p ( x ) x ( σ 1 ) p / q d x d y 1 p = ( k λ ( 1 ) ( σ ) ) 1 q 0 0 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α y σ 1 d y x ( σ 1 ) ( p 1 ) f p ( x ) d x 1 p = ( k λ ( 1 ) ( σ ) ) 1 q 0 ω 1 ( σ , x ) x p ( 1 σ ) 1 f p ( x ) d x 1 p = k λ ( 1 ) ( σ ) 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p .
Setting 0 < M 1 k λ ( 1 ) ( σ ) ( < ) , (13) follows.
Therefore, Conditions (i), (iii), and (iv) are equivalent. Since the Conditions (i) and (iii) are equivalent, similarly, by Fubini’s theorem, we have
I = 0 f ( x ) 0 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α g ( y ) d y d x ,
and we deduce that Conditions (ii) and (iii) are equivalent. Hence, the conditions (i), (ii), (iii), and (iv) are equivalent.
When Condition (iv) is satisfied, if there exists a constant M 1 k λ ( 1 ) ( σ ) , such that (14) is true, then by Lemma 1 we have k λ ( 1 ) ( σ ) M 1 . Hence, the constant factor M 1 = k λ ( 1 ) ( σ ) in (14) is the best possible.
The constant factor M 1 = k λ ( 1 ) ( σ ) in (13) is still the best possible. Otherwise, by (16) (for σ 1 = σ ), we would conclude that the constant factor M 1 = k λ ( 1 ) ( σ ) in (15) is not the best possible. Similarly, we can prove that the constant factor M 1 = k λ ( 1 ) ( σ ) in (14) is the best possible.
This completes the proof of the theorem. □
In particular, for σ = σ 1 = 1 p in Theorem 1, we derive the following corollary.
Corollary 1.
If α > 1 p , then the following conditions are equivalent:
(i) There exists a constant M 1 > 0 , such that for any f ( x ) 0 , satisfying
0 < 0 x p 2 f p ( x ) d x < ,
we have the following inequality:
0 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x p d y 1 p > M 1 0 x p 2 f p ( x ) d x 1 p .
(ii) There exists a constant M 1 > 0 , such that for any g ( y ) 0 , satisfying
0 < 0 g q ( y ) d y < ,
we have the following inequality:
0 x q 2 0 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α g ( y ) d y q d x 1 q > M 1 0 g q ( y ) d y 1 q .
(iii) There exists a constant M 1 > 0 , such that for any f ( x ) , g ( y ) 0 , satisfying
0 < 0 x p 2 f p ( x ) d x < and 0 < 0 g q ( y ) d y < ,
we have the following inequality:
0 g ( y ) 0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x d y > M 1 0 x p 2 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q .
The constant M 1 = k λ ( 1 ) ( 1 p ) in (19)–(21) is the best possible.
Setting y = 1 Y , G ( Y ) = g ( 1 Y ) 1 Y 2 λ in Theorem 1, and then replacing Y by y , we deduce the following corollary.
Corollary 2.
If σ > α , then the following conditions are equivalent:
(i) There exists a constant M 1 , such that for any f ( x ) 0 , satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < ,
we have the following inequality:
0 y p ( λ σ 1 ) 1 0 y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α f ( x ) d x p d y 1 p > M 1 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p .
(ii) There exists a constant M 1 > 0 , such that for any G ( y ) 0 , satisfying
0 < 0 y q [ 1 ( λ σ 1 ) ] 1 G q ( y ) d y < ,
we have the following reverse Hardy-type integral inequality:
0 x q σ 1 x ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α G ( y ) d y q d x 1 q > M 1 0 y q [ 1 ( λ σ 1 ) ] 1 G q ( y ) d y 1 q .
(iii) There exists a constant M 1 > 0 , such that for any f ( x ) , G ( y ) 0 , satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < and 0 < 0 y q [ 1 ( λ σ 1 ) ] 1 G q ( y ) d y < ,
we have the following inequality:
0 G ( y ) 0 y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α f ( x ) d x d y > M 1 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q [ 1 ( λ σ 1 ) ] 1 G q ( y ) d y 1 q .
(iv) σ 1 = σ .
If Condition (iv) holds true, then the constant M 1 = k λ ( 1 ) ( σ ) in (22)–(24) is the best possible.
For g ( y ) = G ( y ) and μ = λ σ 1 in Corollary 2, we deduce the corollary below.
Theorem 2.
If σ > α , then the following conditions are equivalent:
(i) There exists a constant M 1 > 0 , such that for any f ( x ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < ,
we have the following reverse Hardy-type inequality of the first kind with the homogeneous kernel:
0 y p μ 1 0 y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α f ( x ) d x p d y 1 p > M 1 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p .
(ii) There exists a constant M 1 > 0 , such that for any g ( y ) 0 satisfying
0 < 0 y q ( 1 μ ) 1 g q ( y ) d y < ,
we have the following reverse Hardy-type inequality of the first kind with the homogeneous kernel:
0 x q σ 1 x ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α g ( y ) d y q d x 1 q > M 1 0 y q ( 1 μ ) 1 g q ( y ) d y 1 p .
(iii) There exists a constant M 1 > 0 , such that for any f ( x ) , g ( y ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < and 0 < 0 y q ( 1 μ ) 1 g q ( y ) d y < ,
we have the following inequality:
0 g ( y ) 0 y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α f ( x ) d x d y > M 1 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 μ ) 1 g q ( y ) d y 1 q .
(iv) μ + σ = λ .
If Condition (iv) holds, then the constant M 1 = k λ ( 1 ) ( σ ) in (25)–(27) is the best possible.
In particular, for λ = 1 , σ = 1 q , μ = 1 p in Theorem 2, we deduce the corollary below.
Corollary 3.
If α > 1 q , then the following conditions are equivalent:
(i) There exists a constant M 1 > 0 , such that for any f ( x ) 0 satisfying
0 < 0 f p ( x ) d x < ,
we have the following inequality:
0 0 y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) 1 + α f ( x ) d x p d y 1 p > M 1 0 f p ( x ) d x 1 p .
(ii) There exists a constant M 1 > 0 , such that for any g ( y ) 0 satisfying
0 < 0 g q ( y ) d y < ,
we have the following inequality:
0 0 x ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) 1 + α g ( y ) d y q d x 1 q > M 1 0 g q ( y ) d y 1 p .
(iii) There exists a constant M 1 > 0 , such that for any f ( x ) , g ( y ) 0 satisfying
0 < 0 f p ( x ) d x < and 0 < 0 g q ( y ) d y < ,
we have the following inequality:
I = 0 g ( y ) 0 y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α f ( x ) d x d y > M 1 0 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q .
The constant M 1 = k 1 ( 1 ) ( 1 q ) in (28)–(30) is the best possible.

4. Reverse Hardy-Type Inequalities of the Second Kind

Similarly, we obtain the following weight function:
ω 2 ( σ , y ) : = y σ 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α x σ 1 d x = 1 ( min { u , 1 } ) α | ln u | β ( max { u , 1 } ) λ + α u σ 1 d u = k λ ( 2 ) ( σ ) ( y > 0 ) .
Given Lemma 2, we similarly derive the following theorem.
Theorem 3.
If λ σ > α , then the following conditions are equivalent:
(i) There exists a constant M 2 > 0 , such that for any f ( x ) 0 , satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < ,
we have the following reverse Hardy-type inequality of the second kind with the non-homogeneous kernel:
0 y p σ 1 1 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x p d y 1 p > M 2 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p .
(ii) There exists a constant M 2 > 0 , such that for any g ( y ) 0 satisfying
0 < 0 y q ( 1 σ 1 ) 1 g q ( y ) d y < ,
we have the following reverse Hardy-type integral inequality of the second kind with the non-homogeneous kernel:
0 x q σ 1 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α g ( y ) d y q d x 1 q > M 2 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q .
(iii) There exists a constant M 2 > 0 , such that for any f ( x ) , g ( y ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < and 0 < 0 y q ( 1 σ 1 ) 1 g q ( y ) d y < ,
we have the following inequality:
0 g ( y ) 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x d y > M 2 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q .
(iv) σ 1 = σ .
If Condition (iv) holds, then the constant M 2 = k λ ( 2 ) ( σ ) in (31)–(33) is the best possible.
In particular, for σ = σ 1 = 1 p in Theorem 3, we have
Corollary 4.
If λ > 1 p α , then the following conditions are equivalent:
(i) There exists a constant M 2 > 0 , such that for any f ( x ) 0 satisfying
0 < 0 x p 2 f p ( x ) d x < ,
we have the following inequality:
0 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x p d y 1 p > M 2 0 x p 2 f p ( x ) d x 1 p .
(ii) There exists a constant M 2 > 0 , such that for any g ( y ) 0 satisfying
0 < 0 g q ( y ) d y < ,
we have the following inequality:
0 x q 2 1 x ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α g ( y ) d y q d x 1 q > M 2 0 g q ( y ) d y 1 q .
(iii) There exists a constant M 2 > 0 , such that for any f ( x ) , g ( y ) 0 satisfying
0 < 0 x p 2 f p ( x ) d x < , and 0 < 0 g q ( y ) d y < ,
we have the following inequality:
0 g ( y ) 1 y ( min { x y , 1 } ) α | ln x y | β ( max { x y , 1 } ) λ + α f ( x ) d x d y > M 2 0 x p 2 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q .
The constant M 2 = k λ ( 2 ) ( 1 p ) in (34)–(36) is the best possible.
Setting y = 1 Y , G ( Y ) = g ( 1 Y ) 1 Y 2 in Theorem 3, and then replacing Y by y , we deduce the following corollary.
Corollary 5.
If λ σ > α , then the following conditions are equivalent:
(i) There exists a constant M 2 > 0 , such that for any f ( x ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < ,
we have the following inequality:
0 y p σ 1 1 y ( min { x / y , 1 } ) α | ln ( x / y ) | β ( max { x / y , 1 } ) λ + α f ( x ) d x p d y 1 p > M 2 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p .
(ii) There exists a constant M 2 > 0 , such that for any G ( y ) 0 satisfying
0 < 0 y q ( 1 + σ 1 ) 1 G q ( y ) d y < ,
we have the following reverse Hardy-type integral inequality:
0 x q σ 1 0 x ( min { x / y , 1 } ) α | ln ( x / y ) | β ( max { x / y , 1 } ) λ + α G ( y ) d y q d x 1 q > M 2 0 y q ( 1 + σ 1 ) 1 G q ( y ) d y 1 q .
(iii) There exists a constant M 2 > 0 , such that for any f ( x ) , G ( y ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < , and 0 < 0 y q ( 1 + σ 1 ) 1 G q ( y ) d y < ,
we have the following inequality:
0 G ( y ) y ( min { x / y , 1 } ) α | ln ( x / y ) | β ( max { x / y , 1 } ) λ + α f ( x ) d x d y > M 2 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 + σ 1 ) 1 G q ( y ) d y 1 q .
(iv) σ 1 = σ .
If Condition (iv) is satisfied, then the constant M 2 = k λ ( 2 ) ( σ ) in (37)–(39) is the best possible.
For g ( y ) = y λ G ( y ) and μ = λ σ 1 in Corollary 5, we obtain the following theorem.
Theorem 4.
If λ σ > α , then the following conditions are equivalent:
(i) There exists a constant M 2 > 0 , such that for any f ( x ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < ,
we have the following reverse Hardy-type integral inequality of the second kind with the homogeneous kernel:
0 y p μ 1 y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α f ( x ) d x p d y 1 p > M 2 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p .
(ii) There exists a constant M 2 > 0 , such that for any g ( y ) 0 satisfying
0 < 0 y q ( 1 μ ) 1 g q ( y ) d y < ,
we have the following reverse Hardy-type inequality of the second kind with the homogeneous kernel:
0 x q σ 1 0 x ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α g ( y ) d y q d x 1 q > M 2 0 y q ( 1 μ ) 1 g q ( y ) d y 1 p .
(iii) There exists a constant M 2 > 0 , such that for any f ( x ) , g ( y ) 0 satisfying
0 < 0 x p ( 1 σ ) 1 f p ( x ) d x < , and 0 < 0 y q ( 1 μ ) 1 g q ( y ) d y < ,
we have the following inequality:
0 g ( y ) y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) λ + α f ( x ) d x d y > M 2 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 μ ) 1 g q ( y ) d y 1 q .
(iv) μ + σ = λ .
If Condition (iv) is satisfied, then the constant M 2 = k λ ( 1 ) ( μ ) in (40)–(42) is the best possible.
In particular, for λ = 1 , σ = 1 q , μ = 1 p in Theorem 4, we derive the corollary below.
Corollary 6.
If α > 1 p , then the following conditions are equivalent:
(i) There exists a constant M 2 > 0 , such that for any f ( x ) 0 satisfying
0 < 0 f p ( x ) d x < ,
we have the following inequality:
0 y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) 1 + α f ( x ) d x p d y 1 p > M 2 0 f p ( x ) d x 1 p .
(ii) There exists a constant M 2 > 0 , such that for any g ( y ) 0 satisfying
0 < 0 g q ( y ) d y < ,
we have the following inequality:
0 0 x ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) 1 + α g ( y ) d y q d x 1 q > M 2 0 g q ( y ) d y 1 p .
(iii) There exists a constant M 2 > 0 , such that for any f ( x ) , g ( y ) 0 satisfying
0 < 0 f p ( x ) d x < , and 0 < 0 g q ( y ) d y < ,
we have the following inequality:
0 g ( y ) y ( min { x , y } ) α | ln ( x / y ) | β ( max { x , y } ) 1 + α f ( x ) d x d y > M 2 0 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q .
The constant M 2 = k 1 ( 1 ) ( 1 p ) in (43)–(45) is the best possible.

5. Conclusions

Hardy-type integral inequalities play a prominent role in the study of analytic inequalities, which are essential in mathematical analysis and its various applications, such as in the study of symmetry and asymmetry phenomena. In the present work, in Theorem 1 and Theorem 3, employing methods of real analysis as well as using weight functions, we obtain a few equivalent conditions of (5) (resp. (6)) with a particular non-homogeneous kernel. Some equivalent conditions of two kinds of reverse Hardy-type integral inequalities with a particular homogeneous kernel are deduced in the form of applications in Theorem 2 and Theorem 4. We also consider some interesting corollaries. In further studies, some Hardy-type integral inequalities involving the Riemann zeta function are obtained. The lemmas and theorems proved within this work provide an extensive account of this type of inequalities.

Author Contributions

Conceptualization, M.T.R., B.Y. and A.R.; methodology, M.T.R., B.Y. and A.R.; software, M.T.R., B.Y. and A.R.; validation, M.T.R., B.Y. and A.R.; formal analysis, M.T.R., B.Y. and A.R.; investigation, M.T.R., B.Y. and A.R.; resources, M.T.R., B.Y. and A.R.; data curation, M.T.R., B.Y. and A.R.; writing—original draft preparation, M.T.R., B.Y. and A.R.; writing—review and editing, M.T.R., B.Y. and A.R.; visualization, M.T.R., B.Y. and A.R.; supervision, M.T.R., B.Y. and A.R.; project administration, M.T.R., B.Y. and A.R.; funding acquisition, B.Y. and A.R. All authors have read and agreed to the published version of the manuscript.

Funding

B. Yang: This work is supported by the National Natural Science Foundation (No. 61772140) and the Characteristic innovation project of Guangdong Provincial Colleges and universities in 2020 (No. 2020KTSCX088). A. Raigorodskii: This work is supported by the grant supporting leading scientific schools of Russia No. NSh-775.2022.1.1. We are grateful for this funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hardy, G.H. Note on a theorem of Hilbert concerning series of positive terms. Proc. Lond. Math. Soc. 1925, 23, 45–46. [Google Scholar]
  2. Schur, I. Bernerkungen sur Theorie der beschrankten Billnearformen mit unendlich vielen Veranderlichen. J. Math. 1911, 140, 1–28. [Google Scholar]
  3. Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, MA, USA, 1934. [Google Scholar]
  4. Mitrinović, D.S.; Pecaric, J.E.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Deivatives; Kluwer Academic: Boston, MA, USA, 1991. [Google Scholar]
  5. Yang, B.C. On Hilbert’s integral inequality. J. Math. Anal. Appl. 1998, 220, 778–785. [Google Scholar]
  6. Yang, B.C. A note on Hilbert’s integral inequality. Chin. Q. J. Math. 1998, 13, 83–86. [Google Scholar]
  7. Yang, B.C. On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Math. Anal. Appl. 2004, 1, 1–8. [Google Scholar]
  8. Yang, B.C.; Brnetic, I.; Krnic, M.; Pecaric, J.E. Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Ineq. Appl. 2005, 8, 259–272. [Google Scholar]
  9. Krnic, M.; Pecaric, J.E. Hilbert’s inequalities and their reverses. Publ. Math. Debr. 2005, 67, 315–331. [Google Scholar]
  10. Hong, Y. On Hardy-Hilbert integral inequalities with some parameters. Ineq. Pure Appl. Math. 2005, 6, 1–10. [Google Scholar]
  11. Arpad, B.; Choonghong, O. Best constant for certain multi linear integral operator. J. Inequal. Appl. 2006, 2006, 28582. [Google Scholar]
  12. Li, Y.J.; He, B. On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 2007, 76, 1–13. [Google Scholar]
  13. Zhong, W.Y.; Yang, B.C. On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl. 2007, 17, 27962. [Google Scholar] [CrossRef]
  14. Xu, J.S. Hardy-Hilbert’s Inequalities with two parameters. Adv. Math. 2007, 36, 63–76. [Google Scholar]
  15. Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
  16. Yang, B.C. Hilbert-Type Integral Inequalities; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2009. [Google Scholar]
  17. Yang, B.C. On Hilbert-type integral inequalities and their operator expressions. J. Guangaong Univ. Educ. 2013, 33, 1–17. [Google Scholar]
  18. Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernal and applications. J. Jilin Univ. 2017, 55, 189–194. [Google Scholar]
  19. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. Equivalent properties of two kinds of Hardy-type integral inequalities. Symmetry 2021, 13, 1006. [Google Scholar] [CrossRef]
  20. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. On Hardy-Type Integral Inequalities in the Whole Plane Related to the Extended Hurwitz-Zeta Function. J. Inequal. Appl. 2020, 2020, 1–24. [Google Scholar] [CrossRef]
  21. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. On the Reverse Hardy -Type Integral Inequalities in the Whole Plane with the Extended Riemann-Zeta Function. J. Math. Inequal. 2020, 14, 525–546. [Google Scholar] [CrossRef]
  22. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. Two Kinds of the Reverse Hardy-Type Integral Inequalities with the Equivalent Forms Related to the Extended Riemann Zeta Function. Appl. Anal. Discret. Math. 2018, 12, 273–296. [Google Scholar] [CrossRef]
  23. Rassias, M.T.; Yang, B.C. Equivalent conditions of a Hardy-type integral inequality related to the extended Riemann zeta function. Adv. Oper. Theory 2017, 2, 237–256. [Google Scholar]
  24. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. A new Hardy-Mulholland-type inequality with a mixed kernel. Adv. Oper. Theory 2021, 6, 27. [Google Scholar] [CrossRef]
  25. He, B.; Hong, Y.; Li, Z. Conditions for the validity of a class of optimal Hilbert type multiple integral inequalities with non-homogeneous. J. Inequal. Appl. 2021, 2021, 1–12. [Google Scholar]
  26. Chen, Q.; He, B.; Hong, Y.; Li, Z. Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 2020, 7414861. [Google Scholar]
  27. He, B.; Hong, Y.; Chen, Q. The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of non-homogeneous kernels and their applications. Open Math. 2021, 19, 400–411. [Google Scholar]
  28. Liao, J.Q.; Yang, B.C. On Hardy-type integral inequalities with the gamma function. J. Inequal. Appl. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
  29. Wang, Z.Q.; Guo, D.R. Introduction to Special Functions; Science Press: Beijing, China, 1979. [Google Scholar]
  30. Kuang, J.C. Real and Functional Analysis; (Continuation) (second volume); Higher Education Press: Beijing, China, 2015. [Google Scholar]
  31. Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rassias, M.T.; Yang, B.; Raigorodskii, A. Equivalent Conditions of the Reverse Hardy-Type Integral Inequalities. Symmetry 2023, 15, 463. https://doi.org/10.3390/sym15020463

AMA Style

Rassias MT, Yang B, Raigorodskii A. Equivalent Conditions of the Reverse Hardy-Type Integral Inequalities. Symmetry. 2023; 15(2):463. https://doi.org/10.3390/sym15020463

Chicago/Turabian Style

Rassias, Michael Th., Bicheng Yang, and Andrei Raigorodskii. 2023. "Equivalent Conditions of the Reverse Hardy-Type Integral Inequalities" Symmetry 15, no. 2: 463. https://doi.org/10.3390/sym15020463

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop