Error Estimates of a Symmetric Spectral Method for a Linear Volterra Integral Equation
Abstract
1. Introduction
2. Some Preliminaries
3. Error Estimates
4. Error Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dixon, J.A. A nonlinear weakly singular Volterra integro-differential equation arising from reaction-diffusion study in a small cell. J. Comput. Appl. Math. 1987, 18, 289–305. [Google Scholar] [CrossRef]
- Shaw, S.; Warby, M.K.; Whiteman, J.R. Error estimates with sharp constants for a fading memory Volterra problem in linear solid viscoelasticity. SIAM J. Numer. Anal. 1997, 34, 1237–1254. [Google Scholar] [CrossRef]
- Al-Khaled, K. Numerical approximations for population growth models. Appl. Math. Comput. 2005, 160, 865–873. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, X. Positive solution bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects. Appl. Math. J. Chin. Univ. 2011, 26, 342–352. [Google Scholar] [CrossRef]
- Villasana, M.; Radunskaya, A. A delay differential equation model for tumor growth. J. Math. Biol. 2003, 47, 270–294. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, T. Spectral methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Appl. Math. 2009, 233, 938–950. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 2010, 79, 147–167. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Wang, W. Long time behavior of non-Fickian delay reaction-diffusion equations. Nonlinear Anal-Real. 2012, 13, 1401–1415. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y. Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions. Adv. Appl. Math. Mech. 2012, 4, 1–20. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, B.; Xie, H. Spectral methods for weakly singular Volterra integral equations with pantograph delays. Front. Math. China 2013, 8, 281–299. [Google Scholar] [CrossRef]
- Tohidi, E.; Navid, O.R.; Shateyi, S. Convergence analysis of Legendre Pseudospectral scheme for solving nonlinear systems of Volterra integra equations. Adv. Math. Phys. 2014, 2014, 307907. [Google Scholar] [CrossRef]
- Cai, H.; Chen, Y. A fractional order collocation method for second kind Volterra integral equations with weakly singular kernels. J. Sci. Comput. 2018, 75, 970–992. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C. Long time numerical behaviors of fractional pantograph equations. Math. Comput. Simul. 2020, 172, 244–257. [Google Scholar] [CrossRef]
- Deng, G.; Yang, Y.; Tohidi, E. High accurate pseudo-spectral Galerkin scheme for pantograph type Volterra integro-differential equations with singular kernels. Appl. Math. Comput. 2021, 396, 125866. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.; Wu, C. A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Meth. Appl. 2021, 14, 355–376. [Google Scholar]
- Liang, H.; Brunner, H. The convergence of collocation solutions in continuous piecewise polynomial spaces for weakly singular Volterra integral equations. SIAM J. Numer. Anal. 2019, 57, 1875–1896. [Google Scholar] [CrossRef]
- Shokri, A. A symmetric P-stable hybrid Obrechkoff methods for the numerical solution of second order IVPS. TWMS J. Pure Appl. Math. 2014, 5, 28–35. [Google Scholar]
- Shokri, A.; Saadat, H. P-stability, TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrodinger equation. Bull. Iran. Math. Soc. 2016, 42, 687–706. [Google Scholar]
- Gu, Z. Chebyshev spectral collocation method for system of nonlinear volterra integral equations. Numer. Algorithms 2020, 83, 243–263. [Google Scholar] [CrossRef]
- Yaghoobnia, A.R.; Khodabin, M.; Ezzati, R. Numerical solution of stochastic It -Volterra integral equations based on Bernstein multi-scaling polynomials. Appl. Math. J. China 2021, 36, 317–329. [Google Scholar] [CrossRef]
- Elkot, N.A.; Zaky, M.A.; Doha, E.H.; Ameen, I.G. On the rate of convergence of the Legendre spectral collocation method for multidimensional nonlinear Volterra-Fredholm integral equations. Theor. Phys. China 2021, 73, 025002. [Google Scholar]
- Agram, N.; Labed, S.B.; Øksendal, B.; Yakhlef, S. Singular control of stochastic Volterra integral equations. Acta Math. Sci. 2022, 42, 1003–1017. [Google Scholar] [CrossRef]
- Chen, X.; Wei, W.; Luo, A. Spectral distribution and numerical methods for rational eigenvalue problems. Symmetry 2022, 14, 1270. [Google Scholar] [CrossRef]
- Wu, N.; Zheng, W.; Gao, W. Symmetric spectral collocation method for a kind of nonlinear Volterra integral equation. Symmetry 2022, 14, 1091. [Google Scholar] [CrossRef]
- Tang, T.; Xu, X.; Cheng, J. On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 2008, 26, 825–837. [Google Scholar]
- Yang, Y.; Chen, Y.; Huang, Y.; Yang, W. Convergence analysis of Legendre-collocation methods for nonlinear Volterra type integro equations. Adv. Appl. Math. Mech. 2015, 7, 74–88. [Google Scholar] [CrossRef]
- Headley, V.B. A multidimensional nonlinear Gronwall inequality. J. Math. Anal. Appl. 1974, 47, 250–255. [Google Scholar] [CrossRef][Green Version]
- Fedotov, A.I. Lebesgue constant estimation in multidimensional Sobolev space. J. Math. 2004, 14, 25–32. [Google Scholar]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods: Fundamentals in Single Domains; Springer: Berlin, Germany, 2006. [Google Scholar]
- Wei, Y.; Chen, Y.; Shi, X.; Zhang, Y. Spectral method for multidimensional Volterra integral equation with regular kernel. Front. Math. China 2019, 14, 435–448. [Google Scholar] [CrossRef]
- Nevai, P. Mean convergence of Lagrange interpolation. Trans. Am. Math. Soc. 1984, 282, 669–698. [Google Scholar] [CrossRef]
- Ragozin, D.L. Polynomial approximation on compact manifolds and homogeneous spaces. Trans. Am. Math. Soc. 1970, 150, 41–53. [Google Scholar] [CrossRef]
- Ragozin, D.L. Constructive polynomial approximation on spheres and projective spaces. Trans. Am. Math. Soc. 1971, 162, 157–170. [Google Scholar]
- Wei, Y.; Chen, Y. A Jacobi spectral method of multidimensional linear Volterra integral equation of the second kind. J. Sci. Comput. 2019, 79, 1801–1813. [Google Scholar] [CrossRef]
- Boykov, I.V.; Tynda, A.N. Numerical methods of optimal accuracy for weakly singular Volterra integral equations. Ann. Funct. Anal. 2015, 6, 114–133. [Google Scholar] [CrossRef]
N | 2 | 4 | 6 | 8 |
---|---|---|---|---|
-error | 0.890754 | 0.813149 | 7.16 × 10 | 4.65 × 10 |
-error | 1.064346 | 0.888106 | 5.91 × 10 | 5.31 × 10 |
N | 10 | 12 | 14 | 16 |
-error | 1.43 × 10 | 7.40 × 10 | 7.82 × 10 | 7.35 × 10 |
-error | 1.67 × 10 | 6.63 × 10 | 6.92 × 10 | 6.45 × 10 |
N | 2 | 4 | 6 | 8 |
---|---|---|---|---|
-error | 1.126858 | 1.847336 | 3.18 × 10 | 1.01 × 10 |
-error | 1.777118 | 2.421684 | 4.59 × 10 | 7.04 × 10 |
N | 10 | 12 | 14 | 16 |
-error | 1.34 × 10 | 4.30 × 10 | 1.85 × 10 | 1.34 × 10 |
-error | 5.19 × 10 | 8.30 × 10 | 2.02 × 10 | 2.84 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Zheng, W.; Chen, Y. Error Estimates of a Symmetric Spectral Method for a Linear Volterra Integral Equation. Symmetry 2023, 15, 60. https://doi.org/10.3390/sym15010060
Wu D, Zheng W, Chen Y. Error Estimates of a Symmetric Spectral Method for a Linear Volterra Integral Equation. Symmetry. 2023; 15(1):60. https://doi.org/10.3390/sym15010060
Chicago/Turabian StyleWu, Danna, Weishan Zheng, and Yanfeng Chen. 2023. "Error Estimates of a Symmetric Spectral Method for a Linear Volterra Integral Equation" Symmetry 15, no. 1: 60. https://doi.org/10.3390/sym15010060
APA StyleWu, D., Zheng, W., & Chen, Y. (2023). Error Estimates of a Symmetric Spectral Method for a Linear Volterra Integral Equation. Symmetry, 15(1), 60. https://doi.org/10.3390/sym15010060