Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method
Abstract
1. Introduction
2. Description of the Method
Legendre Polynomials
3. Stability Analysis
- Case 2: Here, . In this case, the calculation has been done using Maple software version 13. We successfully obtain the following stable endemic equilibrium :
4. Numerical Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. 1927, 115, 700–721. [Google Scholar]
- Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D. Indirect health effects of relative humidity in indoor envi-ronments. Environ. Health Perspect. 1986, 65, 351–361. [Google Scholar]
- Minhaz Ud-Dean, S.M. Structural explanation for the effect of humidity on persistence of airborne virus: Seasonality of influenza. J. Theoret. Biol. 2010, 264, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Human and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Dexter, N. Stochastic models of foot and mouth disease in feral pigs in the Australian semi-arid rangelands. J. Appl. Ecol. 2003, 40, 293–306. [Google Scholar] [CrossRef]
- Liu, M.; Wang, K. Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment. J. Theor. Biol. 2010, 264, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.; Greenhalgh, D.; Mao, X.; Pan, J. The SIS epidemic model with Markovian switching. J. Math. Anal. Appl. 2012, 394, 496–516. [Google Scholar] [CrossRef]
- Bao, J.; Shao, J. Permanence and extinction of regime-switching predator-prey models. SIAM J. Math. Anal. 2016, 48, 725–739. [Google Scholar] [CrossRef]
- Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Bacar, N.; Khaladi, M. On the basic reproduction number in a random environment. J. Math. Biol. 2013, 67, 1729–1739. [Google Scholar] [CrossRef]
- Bacar, N.; Ed-Darraz, A. On linear birth-and-death processes in a random environment. J. Math. Biol. 2014, 69, 73–90. [Google Scholar] [CrossRef][Green Version]
- Khan, S.U.; Ali, I. Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation. AIP Adv. 2008, 8, 035301. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, M.; Ali, I. A spectral collocation method for stochastic Volterra integro-differential equations and its error analysis. J. Adv. Differ. Equ. 2019, 1, 161. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Numerical analysis of stochastic SIR model by Legendre spectral collocation method. Adv. Mech. Eng. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Greenhalgh, D.; Liang, Y.; Mao, X. Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching. Phys. A 2016, 462, 684–704. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate. Chaos Solitons Fractals 2020, 138, 110008. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Convergence and error analysis of a spectral collo- cation method for solving system of nonlinear Fredholm integral equations of second kind. Comput. Appl. Math. 2019, 38, 125. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Applications of Legendre spectral collocation method for solving system of time delay differential equations. Adv. Mech. Eng. 2020, 12, 1687814020922113. [Google Scholar] [CrossRef]
- Hieu, N.T.; Du, N.H.; Auger, P.; Dang, N.H. Dynamical behavior of a stochastic SIRS epidemic model. Math. Model. Nat. Phenom. 2015, 10, 5673. [Google Scholar] [CrossRef]
- Din, R.; Algehyne, E.A. Mathematical analysis of COVID-19 by using SIR model with convex incidence rate. Results Phys. 2021, 23, 103970. [Google Scholar] [CrossRef]
- Chu, Y.M.; Ali, A.; Khan, M.A.; Islam, S.; Ullah, S. Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia. Results Phys. 2021, 21, 103787. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. New concept in calculus: Piecewise differential and integral operators. Chaos Solitons Fractals 2021, 145, 110638. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. Modeling Third Waves of COVID-19 Spread with Piecewise Differential and Integral Operators. Turkey, Spain and Czechia. medRxiv 2021. [Google Scholar] [CrossRef]
- Rahman, M.; Arfan, M.; Shah, K.; Gómez-Aguilar, J.F. Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative. Chaos Solitons Fractals 2020, 140, 110232. [Google Scholar] [CrossRef]
- El Koufi, A.; Bennar, A.; El Koufi, N.; Yousfi, N. Asymptotic properties of a stochastic SIQR epidemic model with Lévy jumps and Beddington–DeAngelis incidence rate. Results Phys. 2021, 27, 104472. [Google Scholar] [CrossRef]
- Matadi, M.B. Lie symmetry analysis of stochastic SIRS model. Commun. Math. Biol. Neurosci. 2019, 23, 6–9. [Google Scholar]
- Wilkinson, R.R.; Ball, F.G.; Sharkey, K.J. The relationships between message passing, pairwise, Kermack–McKendrick and stochastic SIR epidemic models. J. Math. Biol. 2017, 75, 1563–1590. [Google Scholar] [CrossRef]
- Lahrouz, A.; Omari, L. Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence. Stat. Probab. Lett. 2013, 83, 960–968. [Google Scholar] [CrossRef]
- Meng, W.; Nanjing, H.; Changwen, Z. European option pricing with time delay. In Proceedings of the 2008 27th Chinese Control Conference, Kunming, China, 16–18 July 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 589–593. [Google Scholar]
- Anderson, R.M.; May, R.M. Population biology of infectious diseases: Part I. Nature 1979, 280, 361–367. [Google Scholar] [CrossRef]
- Song, Y.; Miao, A.; Zhang, T.; Wang, X.; Liu, J. Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible. Adv. Differ. Equ. 2008, 2018, 293. [Google Scholar] [CrossRef]
- Capasso, V. Mathematical Structure of Epidemic Systems. In Lecture Notes in Biomathematics; Springer: Berlin, Germany, 1993; Volume 97. [Google Scholar]
- Levin, S.A.; Hallam, T.G.; Gross, L.J. Applied Mathematical Ecology; Springer: New York, NY, USA, 1989. [Google Scholar]
- Xia, Y.; Gog, J.R.; Grenfell, B.T. Semiparametric estimation of the duration of immunity from infectious disease time series: Influenza as a case-study. J. R. Stat. Soc. Ser. C 2005, 54, 659–672. [Google Scholar] [CrossRef]
- El Koufi, A.; Adnani, J.; Bennar, A.; Yousfi, N. Analysis of a stochastic SIR model with vaccination and nonlinear incidence rate. Int. J. Differ. Equ. Appl. 2019, 2019, 9275051. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, Q. A stochastic SIR epidemic model with Lévy jump and media coverage. Adv. Differ. Equ. 2020, 2020, 70. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sun, W. Periodic solutions of stochastic differential equations driven by Lévy noises. J. Nonlinear Sci. 2021, 31, 32. [Google Scholar] [CrossRef]
- El Koufi, A.; Adnani, J.; Bennar, A.; Yousfi, N. Dynamics of a stochastic SIR epidemic model driven by Lévy jumps with saturated incidence rate and saturated treatment function. Stoch. Anal. Appl. 2021. [Google Scholar] [CrossRef]
- El Koufi, A.; El Koufi, N. Stochastic differential equation model of COVID-19: Case study of Pakistan. Results Phys. 2022, 21, 105218. [Google Scholar] [CrossRef]
- Dieu, N.T.; Nguyen, D.H.; Du, N.H.; Yin, G. Classification of asymptotic behavior in a stochastic SIR model. SIAM J. Appl. Dyn. Syst. 2016, 15, 1062–1084. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Khan, S.U. Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry 2022, 14, 1838. https://doi.org/10.3390/sym14091838
Ali I, Khan SU. Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry. 2022; 14(9):1838. https://doi.org/10.3390/sym14091838
Chicago/Turabian StyleAli, Ishtiaq, and Sami Ullah Khan. 2022. "Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method" Symmetry 14, no. 9: 1838. https://doi.org/10.3390/sym14091838
APA StyleAli, I., & Khan, S. U. (2022). Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry, 14(9), 1838. https://doi.org/10.3390/sym14091838