A Method for the Solution of Coupled System of Emden–Fowler–Type Equations
Abstract
1. Introduction
2. Methodology
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wazwaz, A.M. A new method for solving singular initial value problems in the second-order ordinary differential equations. Appl. Math. Comput. 2002, 128, 45–57. [Google Scholar] [CrossRef]
- Hasan, Y.Q.; Zhu, L.M. Modified Adomian decomposition method for singular initial value problems in the second-order ordinary differential equations. Surveys Math. Appl. 2008, 3, 183–193. [Google Scholar]
- Hasan, Y.Q. Modified Adomian decomposition method for second order singular initial value problems. Adv. Comput. Math. Appl. 2012, 1, 94–99. [Google Scholar]
- Hasan, Y.Q. A new development to the Adomian decomposition for solving singular IVPs of Lane-Emden type. United States Am. Res. J. 2014, 2, 9–13. [Google Scholar]
- Viriyapong, C.; Viriyapong, N. Modified Sumudu decomposition method for solving Lane-Emden-fowler type systems. WSEAS Transc. Math. 2021, 20, 446–454. [Google Scholar] [CrossRef]
- Yildirim, A.A.; Ozis, T. Solutions of singular IVPs of Lane-Emden type by the variational iteration method. Nonlinear Anal. 2009, 70, 2480–2484. [Google Scholar] [CrossRef]
- Eltayeb, H. The combined Laplace transform and new homotopy perturbation methods for Lane-Emden type differential equations. J. Nonlinear Anal. Appl. 2018, 2, 95–105. [Google Scholar] [CrossRef][Green Version]
- Chowdhury, M.S.H.; Hashim, I. Solutions of Emden-Fowler equations by homotopy perturbation. method. Nonlinear Anal. Real World Appl. 2009, 10, 104–115. [Google Scholar] [CrossRef]
- Bataineh, A.S.; Noorani, V.; Hashim, I. Homotopy analysis method for singular IVPs of Emden-Fowler type. Commun. Nonlinear Sci. Num. Simul. 2009, 14, 1121–1131. [Google Scholar] [CrossRef]
- Singh, R.; Guleria, V.; Singh, M. Harr wavelet quasilinearization method for numerical solution of Emden-Fowler type equations. Math. Comp. Simul. 2020, 174, 123–133. [Google Scholar] [CrossRef]
- Bataineh, A.S.; Isik, O.R.; Alomari, A.K.; Shatnawi, M.; Hashim, I. An efficient scheme for time-dependent Emden-Fowler type equations based on two-dimensional Bernstein polynomials. Mathematics 2020, 8, 1473. [Google Scholar] [CrossRef]
- Singh, R.; Wazwaz, A.M. Analytical approximations of the three-point generalized Thomos-Fermi and Lane-Emden-Fowler type equations. Eur. Phy. J. Plus 2022, 137, 63. [Google Scholar] [CrossRef]
- Biazar, J.; Hosseini, K. An effective modification of Adomian decomposition method for solving Emden-Fowler type systems. Natl. Acad. Sci. Lett. USA 2017, 40, 285–290. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The variational iteration method for solving systems of equations of Emden-Fowler type. Int. J. Comput. Math. 2011, 88, 3406–3415. [Google Scholar] [CrossRef]
- Singh, R. Analytical approach for computation of exact and analytic approximate solutions to the system of Lane-Emden-Fowler type equations arising in astrophysics. Eur. Phy. J. Plus 2018, 133, 320. [Google Scholar] [CrossRef]
- Adomian, G. A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 1990, 13, 17–43. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Partial Differential Equations and Solitary Waves Theory; Higher Education Press: Beijing, China; Springer: Berlin, Germany, 2009. [Google Scholar]
- Wazwaz, A.M. A reliable modification of Adomian decomposition method. Appl. Math. Comput. 1999, 102, 77–86. [Google Scholar] [CrossRef]
- Bakodah, H.O.; Banaja, M.A.; Alrigi, B.A.; Ebaid, A.; Rach, R. An efficient modification of the decomposition method with a convergence parameter for solving Korteweg de Vries equations. J. King Saud Univ.-Sci. 2019, 31, 1424–1430. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Rach, R.; Duan, J.S. A study on the systems of the Volterra integral forms of the Lane-Emden equations by the Adomian decomposition method. Math. Methods Appl. Sci. 2014, 37, 10–19. [Google Scholar] [CrossRef]
- Nuruddeen, R.I.; Muhammad, L.; Nass, A.M.; Sulaiman, T.A. A review of the integral transforms-based decomposition methods and their applications in solving nonlinear PDEs. Palest. J. Math. 2018, 7, 262–280. [Google Scholar]
- Nuruddeen, R.I.; Lawal, M.; Iliyasu, R. Two-step modified natural decomposition method for nonlinear Klein-Gordon equations. Nonlinear Stud. 2018, 25, 743–751. [Google Scholar]
- Bakodah, H.O. Modified Adomian decomposition method for the generalized fifth order KdV equations. Am. J. Comput. Math. 2013, 3, 53–58. [Google Scholar] [CrossRef]
- Kaya, D.; Inc, M. On the solution of the nonlinear wave equation by the decomposition method. Bull. Malays. Math. Soc. 1999, 2, 151–155. [Google Scholar]
- Nuruddeen, R.I.; Garba, B.D. Analytical technique for (2+1) fractional diffusion equation with nonlocal boundary conditions. Open J. Math. Sci. 2018, 2, 287–300. [Google Scholar] [CrossRef]
- Cherruault, Y. Convergence of Adomian’s method. Math. Comput. Model. 1990, 14, 83–86. [Google Scholar] [CrossRef]
- Cherruault, Y.; Adomian, G. Decomposition methods: A new proof of convergence. Math. Comput. Model. 1993, 18, 103–106. [Google Scholar] [CrossRef]
- Abbaoui, K.; Cherruault, Y. Convergence of Adomian’s method applied to nonlinear equations. Math. Comput. Model. 1994, 20, 69–73. [Google Scholar] [CrossRef]
- Cherruault, Y.; Saccomandi, G.; Some, B. New results for convergence of Adomian’s method applied to integral equations. Math. Comput. Model. 1992, 16, 85–93. [Google Scholar] [CrossRef]
- Gabet, L. The theoretical foundation of the Adomian method. Comput. Math. Appl. 1994, 27, 41–52. [Google Scholar] [CrossRef]
- Babolian, E.; Biazar, J. On the order of convergence of Adomian method. Appl. Math. Comput. 2002, 130, 383–387. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsulami, A.A.; AL-Mazmumy, M.; Bakodah, H.O.; Alzaid, N. A Method for the Solution of Coupled System of Emden–Fowler–Type Equations. Symmetry 2022, 14, 843. https://doi.org/10.3390/sym14050843
Alsulami AA, AL-Mazmumy M, Bakodah HO, Alzaid N. A Method for the Solution of Coupled System of Emden–Fowler–Type Equations. Symmetry. 2022; 14(5):843. https://doi.org/10.3390/sym14050843
Chicago/Turabian StyleAlsulami, Aishah A., Mariam AL-Mazmumy, Huda O. Bakodah, and Nawal Alzaid. 2022. "A Method for the Solution of Coupled System of Emden–Fowler–Type Equations" Symmetry 14, no. 5: 843. https://doi.org/10.3390/sym14050843
APA StyleAlsulami, A. A., AL-Mazmumy, M., Bakodah, H. O., & Alzaid, N. (2022). A Method for the Solution of Coupled System of Emden–Fowler–Type Equations. Symmetry, 14(5), 843. https://doi.org/10.3390/sym14050843