A Review of Hermite–Hadamard Inequality for α-Type Real-Valued Convex Functions
Abstract
:1. Introduction
2. Preliminaries
- i.
- , where The function is both concave and convex on . Thus, it is referred to as an affine.
- ii.
- The functions and are both convex functions on .
- iii.
- is a concave function on .
- i.
- If and then ;
- ii.
- If and then .
- i.
- If and then ;
- ii.
- If and then .
- i.
- ;
- ii.
- .
3. Hermite–Hadamard Inequality
4. H-H-Type Inequalities for Various Classes of Convexities
- i.
- on ;
- ii.
- .
5. H-H-Type Inequalities for Differentiable Functions
6. Generalized H-H-Type Inequalities Involving Different Fractional Integrals
7. Applications to Special Means
- The arithmetic mean:
- The geometric mean:
- The logarithmic mean:
- The generalized log mean:
8. Applications to the Quadrature Formula
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitrinović, D.; Lacković, I. Hermite and convexity. Aequ. Math. 1985, 28, 229–232. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–216. [Google Scholar]
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 1–82. [Google Scholar]
- Dragomir, S.; Pearce, C. Selected Topics on Hermite–Hadamard Inequalities and Applications; RGMIA Monographs; Austral Internet Publishing: Victoria, Australia, 2004. [Google Scholar]
- Bullen, P. Handbook of Means and Their Inequalities; Kluwer Academic Publisher: New York, NY, USA, 2003; Volume 260. [Google Scholar]
- Wang, J.; Fečkan, M. Fractional Hermite-Hadamard Inequalities; Walter de Gruyter: Berlin, Germany, 2018; Volume 5. [Google Scholar]
- Almutairi, O. Generalization of Hermite-Hadamard type inequalities and their applications. Ph.D. Thesis, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2020. [Google Scholar]
- Almutairi, O.; Kılıçman, A. New fractional inequalities of midpoint type via s-convexity and their application. J. Inequalities Appl. 2019, 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bin-Mohsin, B.; Awan, M.U.; Noor, M.A.; Riahi, L.; Noor, K.I.; Almutairi, B. New quantum Hermite-Hadamard inequalities utilizing harmonic convexity of the functions. IEEE Access 2019, 7, 20479–20483. [Google Scholar] [CrossRef]
- Duc, D.T.; Hue, N.N.; Nhan, N.D.V.; Tuan, V.K. Convexity according to a pair of quasi-arithmetic means and inequalities. J. Math. Anal. Appl. 2020, 488, 124059. [Google Scholar] [CrossRef]
- Dragomir, S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S.; Bakula, M.K.; Özdemir, M.E.; Pečarić, J. Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 2007, 193, 26–35. [Google Scholar] [CrossRef]
- Liu, F.; Cai, J.; Lemieux, C.; Wang, R. Convex risk functionals: Representation and applications. Insur. Math. Econ. 2020, 90, 66–79. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. New generalized Hermite-Hadamard inequality and related integral inequalities involving Katugampola type fractional integrals. Symmetry 2020, 12, 568. [Google Scholar]
- Dragomir, S.S. Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions. Math. Methods Appl. Sci. 2021, 44, 2364–2380. [Google Scholar] [CrossRef]
- Dahmani, Z.; Belhamiti, M.M. Integral Inequalities and Differential Equations via Fractional Calculus; IntechOpen: London, UK, 2020. [Google Scholar]
- Almutairi, O.; Kiliçman, A. Generalized Fejér–Hermite–Hadamard type via generalized (h- m)-convexity on fractal sets and applications. Chaos Solitons Fractals 2021, 147, 110938. [Google Scholar] [CrossRef]
- Udriste, C. Convex Functions and Optimization Methods on Riemannian Manifolds; Springer: Berlin/Heidelberg, Germany, 2013; Volume 297. [Google Scholar]
- Ullah, S.Z.; Khan, M.A.; Chu, Y.M. A note on generalized convex functions. J. Inequalities Appl. 2019, 2019, 1–10. [Google Scholar]
- Jensen, J.L.W.V. Om konvekse funktioner og uligheder imellem middelvaerdier. Nyt Tidsskr. Mat. 1905, 16, 49–68. [Google Scholar]
- Niculescu, C.; Persson, L.E. Convex Functions and Their Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Mo, H.; Sui, X.; Yu, D. Generalized convex functions and some inequalities on fractal sets. arXiv 2014, arXiv:1404.3964. [Google Scholar]
- Godunova, E.; Levin, V. Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii. Vycislitel. Mat. i Fiz. Mezvuzov. Sb. Nauc. Tr. Mgpi Mosk. 1985, 166, 138–142. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.; Fink, A.M. Classical and New Inequalities in Analysis; Springer Science and Business Media: New York, NY, USA, 2013; Volume 61. [Google Scholar]
- Dragomir, S.; Pecaric, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math 1995, 21, 335–341. [Google Scholar]
- Radulescu, M.; Radulescu, S.; Alexandrescu, P. On the Godunova-Levin-Schur class of functions. Math. Inequal. Appl 2009, 12, 853–862. [Google Scholar] [CrossRef]
- Fang, Z.B.; Shi, R. On the (p, h)-convex function and some integral inequalities. J. Inequalities Appl. 2014, 2014, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kadakal, H.; Kadakal, M.; Iscan, İ. Some new integral inequalities for n-times differentiable Godunova-Levin functions. Cumhur. Sci. J. 2017, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Breckner, W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Pupl. Inst. Math 1978, 23, 13–20. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Du, T.; Li, Y.; Yang, Z. A generalization of Simpson’s inequality via differentiable mapping using extended (s, m)-convex functions. Appl. Math. Comput. 2017, 293, 358–369. [Google Scholar] [CrossRef]
- Usta, F.; Budak, H.; Sarıkaya, M.Z.; Set, E. On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators. Filomat 2018, 32, 2153–2171. [Google Scholar] [CrossRef] [Green Version]
- Gozpinar, A.; Set, E.; Dragomir, S.S. Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute value are s-convex. Acta Math. Univ. Comen. 2019, 88, 87–100. [Google Scholar]
- Pinheiro, M.R. Exploring the concept of s-convexity. Aequ. Math. 2007, 74, 201–209. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstr. Math. 2000, 33, 43–50. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. The Hadamard’s inequality for s-convex function of 2-variables on the co-ordinates. Int. J. Math. Anal. 2008, 2, 629–638. [Google Scholar]
- Dragomir, S.S. Integral inequalities of Jensen type for λ-convex functions. Mat. Vesn. 2016, 68, 45–57. [Google Scholar]
- Kılıçman, A.; Saleh, W. Notions of generalized s-convex functions on fractal sets. J. Inequalities Appl. 2015, 2015, 312. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Sarikaya, M.Z.; Set, E. Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex in the second sense. J. Appl. Math. Comput. Mech. 2016, 15, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Fractional Ostrowski inequalities for s-Godunova-Levin functions. Int. J. Anal. Appl. 2014, 5, 167–173. [Google Scholar]
- Kashuri, A.; Liko, R. Hermite-Hadamard type inequalities for generalized (s,m)-preinvex Godunova-Levin functions. Mat. Znan. 2018, 534, 63–75. [Google Scholar]
- Ben-Israel, A.; Mond, B. What is invexity? Anziam J. 1986, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Weir, T.; Mond, B. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Y. On Hadamard-type inequalities for s-preinvex functions. J. Chongqing Norm. Univ. 2010, 27, 5–8. [Google Scholar]
- Meftah, B.; Boukerrioua, K.; Chiheb, T. Hadamard type inequalities for (s, r) preinvex functions in the first sense. Electron. J. Math. Anal. Appl. 2017, 5, 170–190. [Google Scholar]
- Meftah, B.; Souahi, A. Fractional Hermite-Hadamard type inequalities for functions whose derivatives are extended s-(α, m)-preinvex. Int. J. Optim. Control: Theor. Appl. (IJOCTA) 2019, 9, 73–81. [Google Scholar] [CrossRef]
- Cafagna, D. Fractional calculus: A mathematical tool from the past for present engineers [Past and present]. IEEE Ind. Electron. Mag. 2007, 1, 35–40. [Google Scholar] [CrossRef]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.J. General Fractional Derivatives: Theory, Methods and Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Hilfer, R. Mathematical and physical interpretations of fractional derivatives and integrals. Handb. Fract. Calc. Appl. 2019, 1, 47–85. [Google Scholar]
- Baleanu, D.; Machado, J.A.T.; Luo, A.C. Fractional Dynamics and Control; Springer Science and Business Media: New York, NY, USA, 2011. [Google Scholar]
- Nigmatullin, R. Fractional integral and its physical interpretation. Theor. Math. Phys. 1992, 90, 242–251. [Google Scholar] [CrossRef]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer Science and Business Media: New York, NY, USA, 2010. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer Science and Business Media: New York, NY, USA, 2011. [Google Scholar]
- Malinowska, A.B.; Odzijewicz, T.; Torres, D.F. Advanced Methods in the Fractional Calculus of Variations; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Salati, A.B.; Shamsi, M.; Torres, D.F. Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon-les-Bains, Switzerland, 1993; Volume 1. [Google Scholar]
- Anatoly, A.K. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 269, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. Mellin transforms of generalized fractional integrals and derivatives. Appl. Math. Comput. 2015, 257, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Butkovskii, A.; Postnov, S.S.; Postnova, E. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation. Autom. Remote Control 2013, 74, 543–574. [Google Scholar] [CrossRef]
- Gaboury, S.; Tremblay, R.; Fugère, B.J. Some relations involving a generalized fractional derivative operator. J. Inequalities Appl. 2013, 2013, 167. [Google Scholar] [CrossRef] [Green Version]
- Richard, H. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2014. [Google Scholar]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Khurshid, Y.; Adil Khan, M.; Chu, Y.M. Conformable integral inequalities of the Hermite-Hadamard type in terms of GG-and GA-convexities. J. Funct. Spaces 2019, 2019, 6926107. [Google Scholar] [CrossRef]
- Iqbal, A.; Khan, M.A.; Ullah, S.; Chu, Y.M. Some new Hermite–Hadamard-type inequalities associated with conformable fractional integrals and their applications. J. Funct. Spaces 2020, 2020, 9845407. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Vasic, P.M. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970; Volume 61. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2012, 57, 2403–2407. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Old and new on the Hermite-Hadamard inequality. Real Anal. Exch. 2004, 29, 663–686. [Google Scholar] [CrossRef]
- Khattri, S.K. Three proofs of the inequality. Am. Math. Mon. 2010, 117, 273–277. [Google Scholar]
- Hardy, G.; Littlewood, J.; Polya, G. Inequalities; Cambrige University Press: New York, NY, USA, 1952; Volume 2, pp. 151–218. [Google Scholar]
- Robert, A.W.; Varberg, D.E. Convex Functions; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Pearce, C.E.; Rubinov, A. P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 1999, 240, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Barani, A.; Barani, S. Hermite–Hadamard type inequalities for functions when a power of the absolute value of the first derivative is P-convex. Bull. Aust. Math. Soc. 2012, 86, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Kadakal, M. Some Hermite-Hadamard type inequalities for (P; m)-function and quasi m-convex functions. Int. J. Optim. Control Theor. Appl. 2020, 10, 78–84. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Latif, M.A.; Akdemir, A.O. On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates. J. Inequalities Appl. 2012, 2012, 21. [Google Scholar] [CrossRef] [Green Version]
- İşcan, İ.; Set, E.; Özdemir, M.E. On new general integral inequalities for s-convex functions. Appl. Math. Comput. 2014, 246, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S. A mapping in connection to Hadamard’s inequalities. Akad. Der Wissenschaften. Math. Nat. Kl. 1991, 128, 17–20. [Google Scholar]
- Dragomir, S.S. Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 1992, 167, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.; Ionescu, N. Some integral inequalities for differentiable convex functions. Contrib. Maced. Acad. Sci. Arts 1992, 13, 13–17. [Google Scholar]
- Dragomir, S.S.; Milošević, D.M.; Sándor, J. On some refinements of Hadamard’s inequalities and applications. In Publikacije Elektrotehničkog Fakulteta. Serija Matematika; University of Belgrade: Belgrade, Serbia, 1993; pp. 3–10. [Google Scholar]
- Dragomir, S. New refinements of the Hermite-Hadamard integral inequality for convex functions and applications. Soochow J. Math. 2002, 28, 357–374. [Google Scholar]
- Dragomir, S.S. Further properties of some mappings associated with Hermite-Hadamard inequalities. Tamkang J. Math. 2003, 34, 45–58. [Google Scholar] [CrossRef]
- Kılıçman, A.; Saleh, W. Some generalized Hermite-Hadamard type integral inequalities for generalized s-convex functions on fractal sets. Adv. Differ. Equ. 2015, 2015, 301. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
- Pearce, C.E.; Pečarić, J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl. Math. Lett. 2000, 13, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Barani, A.; Ghazanfari, A.G.; Dragomir, S.S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequalities Appl. 2012, 2012, 247. [Google Scholar] [CrossRef] [Green Version]
- Mehrez, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Zhu, C.; Fečkan, M.; Wang, J. Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inform. 2012, 8, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, X.; Fečkan, M.; Zhou, Y. Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2013, 92, 2241–2253. [Google Scholar] [CrossRef]
- Set, E.; Sarikaya, M.Z.; Özdemir, M.E.; Yıldırım, H. The Hermite-Hadamard’s inequality for some convex functions via fractional integrals and related results. J. Appl. Math. Stat. Inform. 2014, 10, 69–83. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Zhu, C. Refinements of Hermite-Hadamard type inequalities involving fractional integrals. Bull. Belg. Math. Soc. -Simon Stevin 2013, 20, 655–666. [Google Scholar] [CrossRef]
- Mo, H.; Sui, X. Hermite-Hadamard-type inequalities for generalized s-convex functions on real linear fractal set Rα(0<α<1). Math. Sci. 2017, 11, 241–246. [Google Scholar]
- Vivas, M.; Hernández, J.; Merentes, N. New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets. Rev. Colomb. De MatemÁticas 2016, 50, 145–164. [Google Scholar] [CrossRef]
- Luo, C.; Wang, H.; Du, T. Fejér–Hermite–Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Mehreen, N.; Anwar, M. Integral inequalities for some convex functions via generalized fractional integrals. J. Inequalities Appl. 2018, 2018, 208. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R. Taylor’s formula and integral inequalities for conformable fractional derivatives. In Contributions in Mathematics and Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 25–43. [Google Scholar]
- Set, E.; Mumcu, I. Hermite-Hadamard type inequalities for quasi-convex functions via Katugampola fractional integrals. Int. J. Anal. Appl. 2018, 16, 605–613. [Google Scholar]
- Sarikaya, M.Z.; Alp, N. On Hermite–Hadamard–Fejér type integral inequalities for generalized convex functions via local fractional integrals. Open J. Math. Sci. 2019, 3, 273–284. [Google Scholar] [CrossRef]
- Alomari, M.W.; Darus, M.; Kirmaci, U.S. Some inequalities of Hermite-Hadamard type for s-convex functions. Acta Math. Sci. 2011, 31, 1643–1652. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Çelik, B. Certain Hermite-Hadamard type inequalities involving generalized fractional integral operators. Rev. Real Acad. Cienc. Exactas Físicas Nat. Serie A. Mat. 2018, 112, 1539–1547. [Google Scholar] [CrossRef]
- Agarwal, P. Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 2017, 40, 3882–3891. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Kiris, M.E. Some new inequalities of Hermite-Hadamard type for s-convex functions. Miskolc Math. Notes 2015, 16, 491–501. [Google Scholar] [CrossRef]
- Dragomir, S.; Wang, S. Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and for some numerical quadrature rules. Appl. Math. Lett. 1998, 11, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Bullen, P.S.; Mitrinović, D.S.; Vasic, M. Means and Their Inequalities; Springer Science and Business Media: New York, NY, USA, 2013; Volume 31. [Google Scholar]
- Zhou, S.S.; Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F.; Chu, Y.M. New Hermite–Hadamard type inequalities for exponentially convex functions and applications. AIMS Math. 2020, 5, 6874–6901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, O.; Kılıçman, A. A Review of Hermite–Hadamard Inequality for α-Type Real-Valued Convex Functions. Symmetry 2022, 14, 840. https://doi.org/10.3390/sym14050840
Almutairi O, Kılıçman A. A Review of Hermite–Hadamard Inequality for α-Type Real-Valued Convex Functions. Symmetry. 2022; 14(5):840. https://doi.org/10.3390/sym14050840
Chicago/Turabian StyleAlmutairi, Ohud, and Adem Kılıçman. 2022. "A Review of Hermite–Hadamard Inequality for α-Type Real-Valued Convex Functions" Symmetry 14, no. 5: 840. https://doi.org/10.3390/sym14050840
APA StyleAlmutairi, O., & Kılıçman, A. (2022). A Review of Hermite–Hadamard Inequality for α-Type Real-Valued Convex Functions. Symmetry, 14(5), 840. https://doi.org/10.3390/sym14050840