Flow of a Viscous Incompressible Fluid from a Moving Point Source
Abstract
1. Introduction
2. Problem Statement
3. Exact Solution of Simplified Navier–Stokes Equations
4. Investigation of Hydrodynamic Fields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stokes, G.G. Mathematical and Physical Papers; Cambridge University Press: Cambridge, UK, 1880; Volume 1. [Google Scholar]
- Moiseyev, N.N.; Rumyantsev, V.V. Dynamic Stability of Bodies Containing Fluid; Springer: New York, NY, USA, 1968. [Google Scholar]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. (Eds.) Nanomedicine, Biomaterials Science: An Introduction to Materials in Medicine; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Humphrey, J.D.; Delange, S.L. An Introduction to Biomechanics: Solids and Fluids, Analysis and Design; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Planas, G.; Sueur, F. On the “viscous incompressible fluid + rigid body” system with Navier conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 2014, 31, 55–80. [Google Scholar] [CrossRef]
- Ershkov, S.V.; Prosviryakov, E.Y.; Burmasheva, N.V.; Christianto, V. Towards understanding the algorithms for solving the Navier-Stokes equations. Fluid Dyn. Res. 2021, 53, 044501. [Google Scholar] [CrossRef]
- Aristov, S.N.; Knyazev, D.V.; Polyanin, A.D. Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Eng. 2009, 43, 642–662. [Google Scholar] [CrossRef]
- Drazin, P.G.; Riley, N. The Navier–Stokes Equations: A Classification of Flows and Exact Solutions; Cambridge University Press: Cambridge, UK, 2006; 196p. [Google Scholar]
- Aristov, S.N. An Exact Solution to the Point Source Problem. Dokl. Phys. 1995, 40, 346–348. [Google Scholar]
- Aristov, S.N. Stationary Cylindrical Vortex in a Viscous Fluid. Dokl. Phys. 2001, 46, 251–253. [Google Scholar] [CrossRef]
- Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Corvaro, F. Experiences in numerical simulation of wax deposition in oil and multiphase pipelines: Theory versus reality. J. Pet. Sci. Eng. 2019, 174, 997–1008. [Google Scholar] [CrossRef]
- Sedov, L.I. Mechanics of Continuous Media; World Scientific: Singapore, 1997; Volume 1. [Google Scholar]
- Liu, Y.; Peng, Y. Study on the Collapse Process of Cavitation Bubbles Including Heat Transfer by Lattice Boltzmann Method. J. Mar. Sci. Eng. 2021, 9, 219. [Google Scholar] [CrossRef]
- Ershkov, S.V. Non-stationary helical flows for incompressible 3D Navier–Stokes equations. Appl. Math. Comput. 2016, 274, 611–614. [Google Scholar] [CrossRef]
- Ershkov, S.V. About existence of stationary points for the Arnold-Beltrami-Childress (ABC) flow. Appl. Math. Comput. 2016, 276, 379–383. [Google Scholar] [CrossRef][Green Version]
- Ershkov, S.V.; Shamin, R.V. A Riccati-type solution of 3D Euler equations for incompressible flow. J. King Saud Univ. - Sci. 2020, 32, 125–130. [Google Scholar] [CrossRef]
- Ershkov, S.V.; Rachinskaya, A.; Prosviryakov, E.Y.; Shamin, R.V. On the semi-analytical solutions in hydrodynamics of ideal fluid flows governed by large-scale coherent structures of spiral-type. Symmetry 2021, 13, 2307. [Google Scholar] [CrossRef]






Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershkov, S.V.; Prosviryakov, E.Y.; Leshchenko, D.D. Flow of a Viscous Incompressible Fluid from a Moving Point Source. Symmetry 2022, 14, 2156. https://doi.org/10.3390/sym14102156
Ershkov SV, Prosviryakov EY, Leshchenko DD. Flow of a Viscous Incompressible Fluid from a Moving Point Source. Symmetry. 2022; 14(10):2156. https://doi.org/10.3390/sym14102156
Chicago/Turabian StyleErshkov, Sergey V., Evgeniy Yu. Prosviryakov, and Dmytro D. Leshchenko. 2022. "Flow of a Viscous Incompressible Fluid from a Moving Point Source" Symmetry 14, no. 10: 2156. https://doi.org/10.3390/sym14102156
APA StyleErshkov, S. V., Prosviryakov, E. Y., & Leshchenko, D. D. (2022). Flow of a Viscous Incompressible Fluid from a Moving Point Source. Symmetry, 14(10), 2156. https://doi.org/10.3390/sym14102156

