Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking
Abstract
:1. Introduction
2. The Model
2.1. Lattice Spacing and Elastic Constants
2.2. Model Parameters and Monte Carlo Procedure
3. Results and Discussions
3.1. Case : Thermal Dependence of the HS Fraction and the Average Lattice Bond Length
3.1.1. Long Range Effect in the Competition between Ferro- and Antiferro-Elastic Interactions on the Thermal Dependence of the HS Transition and Generation of Elastic Frustration
3.1.2. Spatial Organization of the Spin States in the Course of the Spin Transition
On the Stabilization of the Intermediate Plateau on Cooling
Evidence of Symmetry Breaking
Incomplete Spin Transition
Analysis of the Snapshots: Evidence of Self-Organization and Symmetry Breaking
Residual HS Fraction
3.2. Case : Appearance of an Intermediate Plateau on Heating Only
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gamez, P.; Costa, J.; Sánchez, Q.; Manuel, A.Q.; Guillem, A. Iron Spin-Crossover Compounds: From Fundamental Studies to Practical Applications. Dalton Trans. 2009, 7845–7853. [Google Scholar] [CrossRef]
- Garcia, Y.; Gütlich, P. Thermal Spin Crossover in Mn(II), Mn(II), Cr(II) and Co(II) Coordination Compounds. In Spin Crossover in Transition Metal Compounds, 2nd ed.; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 234, pp. 49–62. [Google Scholar] [CrossRef]
- Van Koningsbruggen, P.J.; Maeda, Y.; Oshio, H. Iron(III) Spin Crossover Compounds. In Spin Crossover in Transition Metal Compounds, 1st ed.; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin, Germany, 2004; Volume 233, pp. 259–324. [Google Scholar] [CrossRef] [Green Version]
- König, E. Some Aspects of the Chemistry of Bis(2,2′-dipyridyl) and Bis(1,10-phenanthroline) Complexes of Iron(II). Coord. Chem. Rev. 1968, 3, 471–495. [Google Scholar] [CrossRef]
- Gütlich, P.; Gaspar, A.B.; Garcia, Y. Spin State Switching in Iron Coordination Compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [Green Version]
- Cambi, L.; Cagnasso, A.; Atti, R. Iron Dithiocarbamates and Nitrosodithiocarbamates. Accad. Naz. Lincei 1931, 13, 809–813. [Google Scholar]
- Cambi, L.; Szegö, L.; Cagnasso, A.; Atti, R. The Magnetic Susceptibility of Complexes. IV. Ferric N, N-Dipropyldithiocarbamates. Accad. Naz. Lincei 1932, 15, 266–271. [Google Scholar]
- Cambi, L.; Malatesta, L. Magnetismus und Polymorphie Innerer Komplexsalze: Eisensalze der Dithiocarbamidsäuren. Ber. Dtsch. Chem. Ges. 1937, 70, 2067–2078. [Google Scholar] [CrossRef]
- Li, Y.; Benchohra, A.; Xu, B.; Baptiste, B.; Béneut, K.; Parisiades, P.; Delbes, L.; Soyer, A.; Boukheddaden, K.; Lescouzec, R. Pressure-Induced Conversion of a Paramagnetic FeCo Complex into a Molecular Magnetic Switch with Tunable Hysteresis. Angew. Chem. 2020, 132, 17425–17429. [Google Scholar] [CrossRef]
- Chorazy, S.; Charytanowicz, T.; Pinkowicz, D.; Wang, J.; Nakabayashi, K.; Klimke, S.; Renz, F.; Ohkoshi, S.-I.; Sieklucka, B. Octacyanidorhenate (V) Ion as an Efficient Linker for Hysteretic Two-Step Iron(II) Spin Crossover Switchable by Temperature, Light, and Pressure. Angew. Chem. 2020, 59, 15741–15749. [Google Scholar] [CrossRef]
- Babilotte, K.; Boukheddaden, K. Theoretical Investigations on the Pressure Effects in Spin-Crossover Materials: Reentrant Phase Transitions and Other Behavior. Phys. Rev. B 2020, 101, 174113. [Google Scholar] [CrossRef]
- Gütlich, P.; Gaspar, A.B.; Ksenofontov, V.; Garcia, Y. Pressure Effect Studies in Molecular Magnetism. J. Phys. Condens. Matter 2004, 16, 1087. [Google Scholar] [CrossRef]
- Sy, M.; Garrot, D.; Slimani, A.; Paez-Espejo, M.; Varret, F.; Boukheddaden, K. Reversible Control by Light of the High-Spin Low-Spin Elastic Interface Inside the Bistable Region of a Robust Spin-Transition Single Crystal. Angew. Chem. 2016, 128, 1787–1791. [Google Scholar] [CrossRef]
- Felts, A.C.; Slimani, A.; Cain, J.M.; Andrus, M.J.; Ahir, A.R.; Abboud, K.A.; Meisel, M.W.; Boukheddaden, K.; Talham, D.R. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core–Shell Architecture. J. Am. Chem. Soc. 2018, 140, 5814–5824. [Google Scholar] [CrossRef]
- Bousseksou, A.; Boukheddaden, K.; Goiran, M.; Consejo, C.; Boillot, M.L.; Tuchagues, J.P. Dynamic Response of the Spin-Crossover Solid Co(H2(Fsa)2en)(Py)2 to a Pulsed Magnetic Field. Phys. Rev. B 2002, 65, 172412. [Google Scholar] [CrossRef]
- Gutlich, P.; Garcia, Y.; Woike, T. Photoswitchable Coordination Compounds. Coord. Chem. Rev. 2001, 219–221, 839–879. [Google Scholar] [CrossRef]
- Hauser, A.; Jeftic, J.; Romstedt, H.; Hinek, R.; Spiering, H. Cooperative Phenomena and Light-Induced Bistability in Iron(II) Spin-Crossover Compounds. Coord. Chem. Rev. 1999, 190–192, 471–491. [Google Scholar] [CrossRef] [Green Version]
- Bousseksou, A.; Varret, F.; Goiran, M.; Boukheddaden, K.; Tuchagues, J.P. The Spin Crossover Phenomenon under High Magnetic Field. In Spin Crossover in Transition Metal Compounds III, 3rd ed.; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 65–84. [Google Scholar] [CrossRef]
- Griffith, J.S.; Orgel, L.E. Ligand-Field Theory. Q. Rev. Chem. Soc. 1957, 11, 381–393. [Google Scholar] [CrossRef]
- Gütlich, P.; Hauser, A.; Spiering, H. Thermal and Optical Switching of Iron(II) Complexes. Angew. Chem. Int. Ed. 1994, 33, 2024–2054. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Fourati, H.; Singh, Y.; Chastanet, G. Evidence of Photo-Thermal Effects on the First-Order Thermo-Induced Spin Transition of [{Fe(NCSe)(py)2}2(m-bpypz)] Spin-Crossover Material. Magnetochemistry 2019, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Oyanagi, H.; Tayagaki, T.; Tanaka, K. Synchrotron Radiation Study of Photo-Induced Spin-Crossover Transitions: Microscopic Origin of Nonlinear Phase Transition. J. Lumin. 2006, 361, 119–120. [Google Scholar] [CrossRef]
- Gütlich, P.; Jung, J. Thermal and Optical Switching of Iron(II) Compounds. J. Mol. Struct. 1995, 347, 21–38. [Google Scholar] [CrossRef]
- Gütlich, P.; Hauser, A. Thermal and Light-Induced Spin Crossover in Iron(II) Complexes. Coord. Chem. Rev. 1990, 97, 1–22. [Google Scholar] [CrossRef]
- Hauser, A. Light-Induced Spin Crossover and the High-Spin→Low-Spin Relaxation. In Spin Crossover in Transition Metal Compounds; Chem, T.C., Ed.; Springer: New York, NY, USA, 2004; Volume 234, pp. 155–198. [Google Scholar] [CrossRef]
- Gütlich, P.; Goodwin, H.A. (Eds.) Spin Crossover in Transition Metal Compounds I–III. In Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2004; Volume 233–235. [Google Scholar]
- Zhang, C.-J.; Lian, K.-T.; Wu, S.-G.; Liu, Y.; Huang, G.-Z.; Ni, Z.-P.; Tong, M.-L. The Substituent Guest Effect on Four-Step Spin-Crossover Behavior. Inorg. Chem. Front. 2020, 7, 911. [Google Scholar] [CrossRef]
- Sy, M.; Varret, F.; Boukheddaden, K.; Bouchez, G.; Marrot, J.; Kawata, S.; Kaizaki, S. Structure-Driven Orientation of the High-Spin–Low-Spin Interface in a Spin-Crossover Single Crystal. Angew. Chem. 2014, 53, 7539–7542. [Google Scholar] [CrossRef]
- Varret, F.; Slimani, A.; Boukheddaden, K.; Chong, C.; Mishra, H.; Collet, E.; Haasnoot, J.; Pillet, S. The Propagation of the Thermal Spin Transition of [Fe(Btr)2(NCS)2]·H2O Single Crystals Observed by Optical Microscopy. New J. Chem. 2011, 35, 2333–2340. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Sy, M. Direct Optical Microscopy Observation of Photo-Induced Effects and Thermal Relaxation in a Spin Crossover Single Crystal. Curr. Inorg. Chem. 2016, 6, 40–48. [Google Scholar] [CrossRef]
- Floquet, S.; Salunke, S.; Boillot, M.L.; Clément, R.; Varret, F.; Boukheddaden, K.; Rivière, E. The Spin Transition of an Iron(III) Complex Intercalated in a MnPS3 Layered Magnet. Occurence of a Hysteresis Effect on Removal of Lattice Solvent. Chem. Mater. 2002, 14, 4164. [Google Scholar] [CrossRef]
- Floquet, S.; Boillot, M.L.; Rivière, E.; Varret, F.; Boukheddaden, K.; Morineau, D.; Négrier, P. Spin Transition with a Large Thermal Hysteresis Near Room Temperature in a Water Solvate of an Iron(III) Thiosemicarbazone Complex. New J. Chem. 2003, 27, 341. [Google Scholar] [CrossRef]
- Kulmaczewski, R.; Cespedes, O.; Halcrow, M.A. Gradual Thermal Spin-Crossover Mediated by a Reentrant Z′ = 1 → Z′ = 6 → Z′ = 1 Phase Transition. Inorg. Chem. 2017, 56, 3144–3148. [Google Scholar] [CrossRef]
- Fourati, H.; Bouchez, G.; Paez-Espejo, M.; Triki, S.; Boukheddaden, K. Spatio-Temporal Investigations of the Incomplete Spin Transition in a Single Crystal of [Fe(2-Pytrz)2{Pt(CN)4}]·3H2O: Experiment and Theory. Crystals 2019, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Villar, N.; Muñoz, M.; Real, J. Symmetry Breaking in Iron(II) Spin-Crossover Molecular Crystals. Magnetochemistry 2016, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-Y.; Ohtsu, H.; Kojima, T.; Dai, J.-W.; Yoshida, T.; Breedlove, B.K.; Zhang, W.-X.; Iguchi, H.; Sato, O.; Kawano, M.; et al. Direct Observation of Ordered High-Spin–Low-Spin Intermediate States of an Iron(III) Three-Step Spin-Crossover Complex. Angew. Chem. Int. Ed. 2016, 55, 5184–5189. [Google Scholar] [CrossRef]
- Hayami, S.; Gu, Z.-Z.; Yoshiki, H.; Fujishima, A.; Sato, O. Iron(III) Spin-Crossover Compounds with a Wide Apparent Thermal Hysteresis around Room Temperature. J. Am. Chem. Soc. 2001, 123, 11644–11650. [Google Scholar] [CrossRef] [PubMed]
- Nihei, M.; Tahira, H.; Takahashi, N.; Otake, Y.; Yamamura, Y.; Saito, K.; Oshio, H. Multiple Bistability and Tristability with Dual Spin-State Conversions in [Fe(dpp)2][Ni(mnt)2]2·MeNO2. J. Am. Chem. Soc. 2010, 132, 3553–3560. [Google Scholar] [CrossRef] [PubMed]
- Hora, S.; Hagiwara, H. High-Temperature Wide Thermal Hysteresis of an Iron(II) Dinuclear Double Helicate. Inorganics 2017, 5, 49. [Google Scholar] [CrossRef]
- Lochenie, C.; Bauer, W.; Railliet, A.P.; Schlamp, S.; Garcia, Y.; Weber, B. Large Thermal Hysteresis for Iron(II) Spin Crossover Complexes with N-(Pyrid-4-yl) isonicotinamide. Inorg. Chem. 2014, 53, 11563–11572. [Google Scholar] [CrossRef]
- Slichter, C.P.; Drickamer, H.G. Pressure-Induced Electronic Changes in Compounds of Iron. J. Chem. Phys. 1972, 56, 2142–2160. [Google Scholar] [CrossRef]
- Nicolazzi, W.; Bousseksou, A. Thermodynamical Aspects of the Spin Crossover Phenomenon. C. R. Chim. 2018, 21, 1060–1074. [Google Scholar] [CrossRef]
- Spiering, H.; Willenbacher, N. Elastic Interaction of High-Spin and Low-Spin Complex Molecules in Spin-Crossover Compounds II. J. Phys. Condens. Matter 1989, 1, 10089. [Google Scholar] [CrossRef] [Green Version]
- Bousseksou, A.; Nasser, J.; Linares, J.; Boukheddaden, K.; Varret, F. Ising-Like Model for the Two-Step Spin-Crossover. J. Phys. I 1992, 2, 1381–1403. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Shteto, I.; Hôo, B.; Varret, F. Dynamical Model for Spin-Crossover Solids. II. Static and Dynamic Effects of Light in the Mean-Field Approach. Phys. Rev. B 2000, 62, 14806. [Google Scholar] [CrossRef]
- Nasser, J.A.; Boukheddaden, K.; Linares, J. Two-Step Spin Conversion and Other Effects in the Atom-Phonon Coupling Model. Eur. Phys. J. B 2004, 39, 219. [Google Scholar] [CrossRef]
- Nasser, J. Diluted Spin Conversion Compounds Behaviours in the Atom-Phonon Coupling Model: Case of Not Too Large Dilution. Eur. Phys. J. B 2005, 48, 19–27. [Google Scholar] [CrossRef]
- D’Avino, G.; Painelli, A.; Boukheddaden, K. Vibronic Model for Spin Crossover Complexes. Phys. Rev. B 2011, 84, 104119. [Google Scholar] [CrossRef]
- Enachescu, C.; Nishino, M.; Miyashita, S.; Hauser, A.; Stancu, A.; Stoleriu, L. Cluster Evolution in Spin Crossover Systems Observed in the Frame of a Mechano-Elastic Model. Eur. Phys. Lett. 2010, 91, 27003. [Google Scholar] [CrossRef]
- Nishino, M.; Boukheddaden, K.; Konishi, Y.; Miyashita, S. Simple Two-Dimensional Model for the Elastic Origin of Cooperativity among Spin States of Spin-Crossover Complexes. Phys. Rev. Lett. 2007, 98, 247203. [Google Scholar] [CrossRef] [Green Version]
- Enachescu, C.; Nishino, M.; Miyashita, S.; Boukheddaden, K.; Varret, F.; Rikvold, P.A. Cluster Spreading in Spin Crossover Compounds Analyzed Using an Elastic Model with Eden and Kawasaki Dynamics. Phys. Rev. B 2015, 91, 104102. [Google Scholar] [CrossRef] [Green Version]
- Nishino, M.; Nakada, T.; Enachescu, C.; Boukheddaden, K.; Miyashita, S. Crossover of the Roughness Exponent for Interface Growth in Systems with Long-Range Interactions Due to Lattice Distortion. Phys. Rev. B 2013, 88, 094303. [Google Scholar] [CrossRef]
- Nishino, M.; Enachescu, C.; Miyashita, S.; Boukheddaden, K.; Varret, F. Intrinsic Effects of the Boundary Condition on the Switching Process of Spin-Crossover Solids. Phys. Rev. B 2010, 82, 020409. [Google Scholar] [CrossRef] [Green Version]
- Nicolazzi, W.; Pillet, S.; Lecomte, C. Two-Variable Anharmonic Model for Spin-Crossover Solids: A Like-Spin Domains Interpretation. Phys. Rev. B 2008, 78, 174401. [Google Scholar] [CrossRef]
- Nicolazzi, W.; Pavlik, J.; Bedoui, S.; Molnar, G.; Bousseksou, A. Elastic Ising-like Model for the Nucleation and Domain Formation in Spin Crossover Molecular Solids. Eur. Phys. J. Spec. Top. 2013, 222, 1137. [Google Scholar] [CrossRef]
- Ndiaye, M.; Boukheddaden, K. Electro-Elastic Modelling of the Two-Step High-Spin to Low-Spin Relaxation with Transient Self-Organized Spin States in 2D Spin Crossover Solids. J. Phys. Soc. Jpn. 2020, 89, 014004–014017. [Google Scholar] [CrossRef]
- Slimani, A.; Varret, F.; Boukheddaden, K.; Garrot, D.; Oubouchou, H.; Kaizaki, S. Velocity of the High-Spin Low-Spin Interface Inside the Thermal Hysteresis Loop of a Spin-Crossover Crystal, via Photothermal Control of the Interface Motion. Phys. Rev. Lett. 2013, 110, 087208. [Google Scholar] [CrossRef]
- Bousseksou, A.; Varret, F.; Nasser, J. Ising-Like Model for the Two Step Spin-Crossover of Binuclear Molecules. J. Phys. I 1993, 3, 1463–1473. [Google Scholar] [CrossRef]
- Nishino, M.; Boukheddaden, K.; Miyashita, S.; Varret, F. Dynamical Aspects of Photoinduced Magnetism and Spin-Crossover Phenomena in Prussian Blue Analogs. Phys. Rev. B 2003, 68, 064452. [Google Scholar] [CrossRef] [Green Version]
- Wajnflasz, J. Etude de la transition « Low Spin »–« High Spin » dans les complexes octaédriques d’ion de transition. Phys. Status Solidi 1970, 40, 537–545. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Linares, J.; Codjovi, E.; Varret, F. Dynamical Ising-Like Model for the Two-Step Spin-Crossover Systems. J. App. Phys. 2003, 93, 7103. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, S.; Konishi, Y.; Nishino, M.; Tokoro, H.; Rikvold, P.A. Realization of the Mean-Field Universality Class in Spin-Crossover Materials. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 014105. [Google Scholar] [CrossRef] [Green Version]
- Paez-Espejo, M.; Sy, M.; Boukheddaden, K. Elastic Frustration Causing Two-Step and Multistep Transitions in Spin-Crossover Solids: Emergence of Complex Antiferroelastic Structures. J. Am. Chem. Soc. 2016, 138, 3202–3210. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Enachescu, C.; Miyashita, S. Multistep Spin-Crossover Transitions Induced by the Interplay Between Short- and Long-Range Interactions with Frustration on a Triangular Lattice. Phys. Rev. B 2019, 100, 134414–134426. [Google Scholar] [CrossRef]
- Singh, Y.; Oubouchou, H.; Nishino, M.; Miyashita, S.; Boukheddaden, K. Elastic-Frustration-Driven Unusual Magnetoelastic Properties in a Switchable Core-Shell Spin-Crossover Nanostructure. Phys. Rev. B 2020, 101, 054105. [Google Scholar] [CrossRef]
- Traiche, R.; Sy, M.; Boukheddaden, K. Elastic Frustration in 1D Spin-Crossover Chains: Evidence of Multi-Step Transitions and Self-Organizations of the Spin States. J. Phys. Chem. C 2018, 122, 4083–4096. [Google Scholar] [CrossRef]
- Gütlich, P.; Ksenofontov, V.; Gaspar, A.B. Pressure Effect Studies on Spin Crossover Systems. Coord. Chem. Rev. 2005, 249, 1811. [Google Scholar] [CrossRef]
- Hauser, A. Intersystem Crossing in the [Fe(Ptz)6](BF4)2 Spin Crossover System (Ptz = 1-Propyltetrazole). J. Chem. Phys. 1991, 94, 2741. [Google Scholar] [CrossRef]
- Nishino, M.; Enachescu, C.; Miyashita, S.; Rikvold, P.A.; Boukheddaden, K.; Varret, F. Macroscopic Nucleation Phenomena in Continuum Media with Long-Range Interactions. Sci. Rep. 2011, 1, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fourati, H.; Milin, E.; Slimani, A.; Chastanet, G.; Abid, Y.; Triki, S.; Boukheddaden, K. Interplay Between a Crystal’s Shape and Spatiotemporal Dynamics in a Spin Transition Material. Phys. Chem. Chem. Phys. 2018, 20, 10142–10154. [Google Scholar] [CrossRef]
- Guerroudj, S.; Caballero, R.; De Zela, F.; Jureschi, C.; Linares, J.; Boukheddaden, K. Monte Carlo—Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles. J. Phys. Conf. Ser. 2016, 738, 012068. [Google Scholar] [CrossRef] [Green Version]
Configurations | HH | HL | LL |
---|---|---|---|
nn distance (nm) | |||
nnn distance (nm) | |||
nn elastic constants ( K/nm2) | |||
nnn elastic constants ( K/nm2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndiaye, M.; Belmouri, N.E.I.; Linares, J.; Boukheddaden, K. Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking. Symmetry 2021, 13, 828. https://doi.org/10.3390/sym13050828
Ndiaye M, Belmouri NEI, Linares J, Boukheddaden K. Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking. Symmetry. 2021; 13(5):828. https://doi.org/10.3390/sym13050828
Chicago/Turabian StyleNdiaye, Mamadou, Nour El Islam Belmouri, Jorge Linares, and Kamel Boukheddaden. 2021. "Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking" Symmetry 13, no. 5: 828. https://doi.org/10.3390/sym13050828
APA StyleNdiaye, M., Belmouri, N. E. I., Linares, J., & Boukheddaden, K. (2021). Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking. Symmetry, 13(5), 828. https://doi.org/10.3390/sym13050828