Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter
Abstract
1. Introduction
2. The Problem: Dichotomy
3. GnEFT Lagrangian
3.1. Scale-Invariant Hidden Local Symmetric (sHLS) Lagrangian
3.2. “Genuine Dilaton” Scenario (GDS)
Unhiding Hidden Scale Symmetry in Nuclei
4. Baryonic Matter without
4.1. Dilaton Limit Fixed Point (DLFP)
4.2. Interplay between and
4.3. The Trace Anomaly and Pseudo-Conformal Symmetry
5. Baryonic Matter with
5.1. From sHLS to the Ring
5.2. Going from the Ring to the Pionic Sheet
6. Ubiquitous Sheet Structure of Baryonic Matter
6.1. Crystal Skyrmions
6.2. Density Functional Theory (DFT)
6.3. Hadron—Quark Continuity a.k.a. Duality
6.4. Hadron—Quark Continuity or Deconfinement
6.5. Emergence of Hidden Scale Symmetry in Nuclear Matter
7. Comments and Further Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammer, H.-W.; König, S.; van Kolck, U. Nuclear effective field theory: Status and perspectives. Rev. Mod. Phys. 2020, 92, 025004. [Google Scholar] [CrossRef]
- Holt, J.W.; Rho, M.; Weise, W. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter. Phys. Rept. 2016, 621, 2. [Google Scholar] [CrossRef]
- Weinberg, S. What is quantum field theory, and what did we think it is? arXiv 1997, arXiv:hep-th/9702027. [Google Scholar]
- Shankar, R. Renormalization group approach to interacting fermions. Rev. Mod. Phys. 1994, 66, 129. [Google Scholar] [CrossRef]
- Polchinski, J. Effective field theory and the Fermi surface. arXiv 1992, arXiv:hep-th/9210046. [Google Scholar]
- Holt, J.W.; Kaiser, N.; Weise, W. Chiral Fermi liquid approach to neutron matter. Phys. Rev. C 2013, 87, 014338. [Google Scholar] [CrossRef]
- Holt, J.W.; Brown, G.E.; Holt, J.D.; Kuo, T.T.S. Nuclear matter with Brown-Rho-scaled Fermi liquid interactions. Nucl. Phys. A 2007, 785, 322. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Towards the hadron-quark continuity via a topology change in compact stars. Prog. Part. Nucl. Phys. 2020, 113, 103791. [Google Scholar] [CrossRef]
- Bando, M.; Kugo, T.; Uehara, S.; Yamawaki, K.; Yanagida, T. Is ρ meson a dynamical gauge boson of hidden local symmetry? Phys. Rev. Lett. 1985, 54, 1215. [Google Scholar] [CrossRef]
- Suzuki, M. Inevitable emergence of composite gauge bosons. Phys. Rev. D 2017, 96, 065010. [Google Scholar] [CrossRef]
- Crewther, R.J. Genuine dilatons in gauge theories. Universe 2020, 6, 96. [Google Scholar] [CrossRef]
- Crewther, R.J.; Tunstall, L.C. ΔI = 1/2 rule for kaon decays derived from QCD infrared fixed point. Phys. Rev. D 2015, 91, 034016. [Google Scholar] [CrossRef]
- Skyrme, T.H.R. A unified field theory of mesons and baryons. Nucl. Phys. 1962, 315, 556. [Google Scholar] [CrossRef]
- Komargodski, Z. Baryons as quantum Hall droplets. arXiv 2018, arXiv:1812.09253. [Google Scholar]
- Karasik, A. Skyrmions, quantum Hall droplets, and one current to rule them all. SciPost Phys. 2020, 9, 8. [Google Scholar] [CrossRef]
- Karasik, A. Vector dominance, one flavored baryons, and QCD domain walls from the “hidden” Wess-Zumino term. SciPost Phys. 2021, 10, 138. [Google Scholar] [CrossRef]
- Nadkarni, S.; Nielsen, H.B.; Zahed, I. Bosonization relations as bag boundary conditions. Nucl. Phys. B 1985, 253, 308. [Google Scholar] [CrossRef]
- Ma, Y.L.; Nowak, M.A.; Rho, M.; Zahed, I. Baryon as a quantum Hall droplet and the hadron-quark duality. Phys. Rev. Lett. 2019, 123, 172301. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Harvey, J.A. Anomalies and fermion zero modes on strings and domain Walls. Nucl. Phys. B 1985, 250, 427. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Mapping topology to nuclear dilaton-HLS effective field theory for dense baryonic matter. arXiv 2021, arXiv:2103.01860. [Google Scholar]
- Goldstone, J.; Jaffe, R.L. The baryon number in chiral bag models. Phys. Rev. Lett. 1983, 51, 1518. [Google Scholar] [CrossRef]
- Harada, M.; Yamawaki, K. Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition. Phys. Rep. 2003, 381, 1–233. [Google Scholar] [CrossRef]
- Shaposhnikov, M.; Zenhausern, D. Quantum scale invariance, cosmological constant and hierarchy problem. Phys. Lett. B 2009, 671, 162–166. [Google Scholar] [CrossRef]
- Kan, N.; Kitano, R.; Yankielowicz, S.; Yokokura, R. From 3d dualities to hadron physics. Phys. Rev. D 2020, 102, 125034. [Google Scholar] [CrossRef]
- Komargodski, Z. Vector mesons and an interpretation of Seiberg duality. J. High Energy Phys. 2011, 2011, 1–21. [Google Scholar] [CrossRef]
- Abel, S.; Barnard, J. Seiberg duality versus hidden local symmetry. J. High Energy Phys. 2012, 2012, 1–42. [Google Scholar] [CrossRef]
- Kitano, R.; Nakamura, M.; Yokoi, N. Making confining strings out of mesons. Phys. Rev. D 2012, 86, 014510. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Quenched gA in nuclei and emergent scale symmetry in baryonic matter. Phys. Rev. Lett. 2020, 125, 142501. [Google Scholar] [CrossRef]
- Rho, M. Multifarious roles of hidden chiral-scale symmetry: “Quenching” gA in nuclei. Symmetry 2021, 13, 1388. [Google Scholar] [CrossRef]
- Li, Y.L.; Ma, Y.L.; Rho, M. Chiral-scale effective theory including a dilatonic meson. Phys. Rev. D 2017, 95, 114011. [Google Scholar] [CrossRef]
- Appelquist, T.; Ingoldby, J.; Piai, M. Nearly conformal composite Higgs model. Phys. Rev. Lett. 2021, 126, 191804. [Google Scholar] [CrossRef]
- Beane, S.R.; van Kolck, U. The dilated chiral quark model. Phys. Lett. B 1994, 328, 137. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Lévy, M. The axial vector current in beta decay. Nuovo Cim. 1960, 16, 705. [Google Scholar] [CrossRef]
- Yamawaki, K. Hidden local symmetry and beyond. Int. J. Mod. Phys. E 2017, 26, 1740032. [Google Scholar] [CrossRef]
- Harada, M.; Lee, H.K.; Ma, Y.L.; Rho, M. Inhomogeneous quark condensate in compressed Skyrmion matter. Phys. Rev. D 2015, 91, 096011. [Google Scholar] [CrossRef]
- Buballa, M.; Carignano, S. Inhomogeneous chiral symmetry breaking in dense neutron-star matter. Eur. Phys. J. A 2016, 52, 57. [Google Scholar] [CrossRef]
- Mueller, E.J. Pseudogaps in strongly interacting Fermi gases. Rep. Prog. Phys. 2017, 80, 104401. [Google Scholar] [CrossRef]
- Harada, M.; Sasaki, C.; Takemoto, S. Enhancement of quark number susceptibility with an alternative pattern of chiral symmetry breaking in dense matter. Phys. Rev. D 2010, 81, 016009. [Google Scholar] [CrossRef]
- Wang, H.; Chudnovskiy, A.L.; Gorsky, A.; Kamenev, A. SYK superconductivity: Quantum Kuramoto and generalized Richardson models. Phys. Rev. Res. 2020, 2, 033025. [Google Scholar] [CrossRef]
- Sasaki, C.; Lee, H.K.; Paeng, W.G.; Rho, M. Conformal anomaly and the vector coupling in dense matter. Phys. Rev. D 2011, 84, 034011. [Google Scholar] [CrossRef]
- Ma, Y.L.; Harada, M.; Lee, H.K.; Oh, Y.; Park, B.Y.; Rho, M. Dense baryonic matter in the hidden local symmetry approach: Half-skyrmions and nucleon mass. Phys. Rev. D 2013, 88, 014016. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Rho, M.; Wirzba, A.; Zahed, I. Color anomaly in a hybrid bag model. Phys. Lett. B 1991, 269, 389. [Google Scholar] [CrossRef]
- Lee, H.J.; Min, D.P.; Park, B.Y.; Rho, M.; Vento, V. The proton spin in the chiral bag model: Casimir contribution and Cheshire cat principle. Nucl. Phys. A 1999, 657, 75. [Google Scholar] [CrossRef]
- Berry, D.K.; Caplan, M.E.; Horowitz, C.J.; Huber, G.; Schneider, A.S. ’Parking-garage’ structures in nuclear astrophysics and cellular biophysics. Phys. Rev. C 2016, 94, 055801. [Google Scholar] [CrossRef]
- Park, B.Y.; Paeng, W.G.; Vento, V. The Inhomogeneous phase of dense skyrmion matter. Nucl. Phys. A 2019, 989, 231. [Google Scholar] [CrossRef]
- Canfora, F. Ordered arrays of baryonic tubes in the Skyrme model in (3 + 1) dimensions at finite density. Eur. Phys. C 2018, 78, 929. [Google Scholar] [CrossRef]
- Canfora, F.; Lagos, M.; Vera, A. Crystals of superconducting baryonic tubes in the low energy limit of QCD at finite density. Eur. Phys. J. C 2020, 80, 697. [Google Scholar] [CrossRef]
- Hu, Y.; Jain, J.K. Kohn-Sham theory of the fractional quantum Hall effect. Phys. Rev. Lett. 2019, 123, 176802. [Google Scholar] [CrossRef]
- Zhang, P.; Kimm, K.; Zou, L.; Cho, Y.M. Re-interpretation of Skyrme theory: New topological structures. arXiv 2017, arXiv:1704.05975. [Google Scholar]
- Gudnason, S.B.; Nitta, M. Fractional skyrmions and their molecules. Phys. Rev. D 2015, 91, 085040. [Google Scholar] [CrossRef]
- Sulejmanpasic, T.; Shao, H.; Sandvik, A.; Unsal, M. Confinement in the bulk, deconfinement on the wall: Infrared equivalence between compactified QCD and quantum magnets. Phys. Rev. Lett. 2017, 119, 091601. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 2020, 16, 907–910. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. The sound speed and core of massive compact stars: A manifestation of hadron-quark duality. arXiv 2021, arXiv:2104.13822. [Google Scholar]
- Schäfer, T.; Wilczek, F. Continuity of quark and hadron matter. Phys. Rev. Lett. 1999, 82, 3956. [Google Scholar] [CrossRef]
- Cherman, A.; Jacobson, T.; Sen, S.; Yaffe, L.G. Higgs-confinement phase transitions with fundamental representation matter. arXiv 2020, arXiv:2007.08539. [Google Scholar]
- Rho, M.; Ma, Y.L. Manifestation of hidden symmetries in baryonic matter: From finite nuclei to neutron stars. Mod. Phys. Lett. A 2021, 36, 2130012. [Google Scholar] [CrossRef]
- Hong, D.K.; Rho, M.; Yee, H.U.; Yi, P. Dynamics of baryons from string theory and vector dominance. J. High Energy Phys. 2007, 2007, 063. [Google Scholar] [CrossRef]
- Kitano, R.; Matsudo, R. Vector mesons on the wall. J. High Energy Phys. 2021, 2021, 1–27. [Google Scholar] [CrossRef]
- Brown, G.E.; Harada, M.; Holt, J.W.; Rho, M.; Sasaki, C. Hidden local field theory and dileptons in relativistic heavy ion collisions. Prog. Theor. Phys. 2009, 121, 1209–1236. [Google Scholar] [CrossRef][Green Version]
- Braun-Munzinger, P.; Koch, V.; Schäfer, T.; Stachel, J. Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rep. 2016, 621, 76–126. [Google Scholar] [CrossRef]
- Schäfer, T.; Baym, G. From nuclear to unnuclear physics. arXiv 2021, arXiv:2109.06924. [Google Scholar]
- Georgi, H. Unparticle physics. Phys. Rev. Lett. 2007, 98, 221601. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-L.; Rho, M. Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter. Symmetry 2021, 13, 1888. https://doi.org/10.3390/sym13101888
Ma Y-L, Rho M. Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter. Symmetry. 2021; 13(10):1888. https://doi.org/10.3390/sym13101888
Chicago/Turabian StyleMa, Yong-Liang, and Mannque Rho. 2021. "Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter" Symmetry 13, no. 10: 1888. https://doi.org/10.3390/sym13101888
APA StyleMa, Y.-L., & Rho, M. (2021). Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter. Symmetry, 13(10), 1888. https://doi.org/10.3390/sym13101888