Elastic Modeling of Two-Step Transitions in Sterically Frustrated 1D Binuclear Spin-Crossover Chains
Abstract
:1. Introduction
2. The Model Hamiltonian
2.1. The Equilibrium Distances
2.2. Elastic Frustration inside the Binuclear Units
3. Results and Discussion
3.1. Analytical Expressions of the Relaxed Lattice Bond Lengths
3.2. Effect of the Elastic Frustration on the Transition Temperatures and Phase Diagram
3.3. Condition of Appearance of the Two-Step Spin Transitions
3.4. Effect of the Intramolecular Elastic Constant
4. Relaxation of the HS Fraction at Low Temperature
4.1. Elastic Frustration Effects on the Low Temperature Relaxation of the Metastable HS State
4.2. Effect of Intramolecular Elastic Constant on the Relaxation Curves
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phan, H.; Benjamin, S.M.; Steven, E.; Brooks, J.S.; Shatruk, M. Photomagnetic Response in Highly Conductive Iron(II) Spin Crossover Complexes with TCNQ Radicals. Angew. Chem. Int. Ed. 2015, 54, 823. [Google Scholar] [CrossRef]
- Ohkoshi, S.I.; Tokoro, H. Photomagnetism in Cyano-Bridged Bimetal Assemblies. Acc. Chem. Res. 2012, 45, 1749. [Google Scholar] [CrossRef]
- Coronado, E.; Galán-Mascarós, J.R.; Monrabal-Capilla, M.; García-Martínez, J.; Pardo-Ibáñez, P. Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature. Adv. Mater. 2007, 19, 1359. [Google Scholar] [CrossRef]
- Kahn, O.; Jay-Martinez, C. Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science 1998, 279, 44. [Google Scholar] [CrossRef]
- Gütlich, P.; Hauser, A.; Spiering, H. Thermal and Optical Switching of Iron(II) Complexes. Angew. Chem. Int. Ed. 1994, 33, 2024–2054. [Google Scholar] [CrossRef]
- Gütlich, P.; Goodwin, H.A. Spin Crossover in Transition Metal Compounds, I, II, III; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; p. 233. [Google Scholar]
- Halcrow, M.A. Spin-Crossover Materials-Properties and Applications; John Wiley & Sons: Chichester, UK, 2013; Volume 52, p. 10419. [Google Scholar] [CrossRef]
- Garcia, Y.; Kahn, O.; Ader, J.-P.; Buzdin, A.; Meurdesoif, Y.; Guillot, M. The effect of a magnetic field on the inversion temperature of a spin crossover compound revisited. Phys. Lett. A. 2000, 271, 145–154. [Google Scholar] [CrossRef]
- Bousseksou, A.; Boukheddaden, K.; Goiran, M.; Consejo, C.; Boillot, M.-L.; Tuchagues, J.-P. Dynamic response of the spin-crossover solid Co(H2(fsa)2en)(py)2 to a pulsed magnetic field. Phys. Rev. B 2002, 65, 172412. [Google Scholar] [CrossRef]
- Pillet, S.; Hubsch, J.; Lecomte, C. Single crystal diffraction analysis of the thermal spin conversion in [Fe(btr)2(NCS2] (H2O): Evidence for spinlike domain formation. Eur. Phys. J. B 2004, 38, 541–552. [Google Scholar] [CrossRef]
- Tanasa, R.; Enachescu, C.; Stancu, A.; Linares, J.; Codjovi, E.; Varret, F.; Haasnoot, J. First-order reversal curve analysis of spin-transition thermal hysteresis in terms of physical-parameter distributions and their correlations. Phys. Rev. B 2005, 71, 014431. [Google Scholar] [CrossRef]
- Olguín, J.; Brooker, S. Spin crossover active iron(II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coord. Chem. Rev. 2011, 255, 203–240. [Google Scholar] [CrossRef]
- Halcrow, M.A. Structure:function relationships in molecular spin-crossover complexes. Chem. Soc. Rev. 2011, 40, 4119–4142. [Google Scholar] [CrossRef]
- Bertoni, R.; Lorenc, M.; Cailleau, H.; Tissot, A.; Laisney, J.; Boillot, M.-L.; Stoleriu, L.; Stancu, A.; Enachescu, C.; Collet, E. Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nat. Mater. 2016, 15, 606–610. [Google Scholar] [CrossRef]
- Gütlich, P.; Gaspar, A.B.; Garcia, Y. Spin state switching in iron coordination compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [Green Version]
- Ridier, K.; Craig, G.A.; Damay, F.; Fennell, T.; Murrie, M.; Chaboussant, G. Probing photoinduced spin states in spin-crossover molecules with neutron scattering. Phys. Rev. B. 2017, 95, 094403. [Google Scholar] [CrossRef] [Green Version]
- Brooker, S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Rev. 2015, 44, 2880–2892. [Google Scholar] [CrossRef] [Green Version]
- Jureschi, C.M.; Linares, J.; Rotaru, A.; Ritti, M.H.; Parlier, M.; Dîrtu, M.M.; Wolff, M.; Garcia, Y. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer. Sensors 2015, 15, 2388–2398. [Google Scholar] [CrossRef]
- Decurtins, S.; Gütlich, P.; Hasselbach, K.M.; Hauser, A.; Spiering, H. Light-induced excited-spin-state trapping in iron(II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study. Inorgan. Chem. 1985, 24, 2174–2178. [Google Scholar] [CrossRef]
- Hauser, A. Reversibility of light-induced excited spin state trapping in the Fe(ptz)6(BF4)2, and the Zn1−xFex(ptz)6(BF4)2 spin-crossover systems. Chem. Phys. Lett. 1986, 124, 543–548. [Google Scholar] [CrossRef]
- Hauser, A.; Adler, J.; Gütlich, P. Light-induced excited spin state trapping (LIESST) in [Fe(2-mephen)3]2+ embedded in polymer matrices. Chem. Phys. Lett. 1988, 152, 468–472. [Google Scholar] [CrossRef]
- Gütlich, P.; Garcia, Y.; Goodwin, H.A. Spin crossover phenomena in Fe(ii) complexesDedicated to Professor, F.A. Cotton on occasion of his 70th birthday. Chem. Soc. Rev. 2000, 29, 419–427. [Google Scholar] [CrossRef]
- Hauser, A. Light-Induced Spin Crossover and the High-Spin→Low-Spin Relaxation. In Spin Crossover in Transition Metal Compounds; Chem, T.C., Ed.; Springer: New York, NY, USA, 2004; Volume 234, pp. 155–198. [Google Scholar]
- Mahfoud, T.; Molnar, G.; Bonhommeau, S.; Cobo, S.; Salmon, L.; Demont, P.; Tokoro, H.; Ohkoshi, S.; Boukheddaden, K.; Bousseksou, A. Electric-Field-Induced Charge-Transfer Phase Transition: A Promising Approach Toward Electrically Switchable Devices. J. Am. Chem. Soc. 2009, 131, 15049–15054. [Google Scholar] [CrossRef]
- Rotaru, A.; Dugay, J.; Tan, R.P.; Guralskiy, I.A.; Salmon, L.; Demont, P.; Carrey, J.; Molnar, G.; Respaud, M.; Bousseksou, A. Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices. Adv. Mater. 2013, 25, 1745–1749. [Google Scholar] [CrossRef] [Green Version]
- Prins, F.; Monrabal-Capilla, M.; Osorio, E.A.; Coronado, E.; van der Zant, H.S. Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Adv. Mater. 2011, 23, 1545–1549. [Google Scholar] [CrossRef]
- Moussa, N.O.; Ostrovskii, D.; Garcia, V.M.; Molnár, G.; Tanaka, K.; Gaspar, A.B.; Real, J.A.; Bousseksou, A. Bidirectional photo-switching of the spin state of iron(II) ions in a triazol based spin crossover complex within the thermal hysteresis loop. Chem. Phys. Lett. 2009, 477, 156–159. [Google Scholar] [CrossRef]
- Gallois, B.; Real, J.A.; Hauw, C.; Zarembowitch, J. Structural changes associated with the spin transition in bis(isothiocyanato)bis(1,10-phenanthroline)iron: A single-crystal x-ray investigation. Inorg. Chem. 1990, 29, 1152. [Google Scholar] [CrossRef]
- Shepherd, H.J.; Rosa, P.; Fallis, I.A.; Guionneau, P.; Howard, J.A.K.; Goeta, A.E. Structural origin of the gradual spin transition in a mononuclear iron(II) complex. Phys. Chem. Solids 2012, 73, 193–197. [Google Scholar] [CrossRef]
- Takahashi, K.; Mori, H.; Kobayashi, H.; Sato, O. Mechanism of reversible spin transition with a thermal hysteresis loop in [FeIII(qsal)2][Ni(dmise)2] 2CH3CN: Selenium analogue of the precursor of an Fe(III) spin-crossover molecular conducting system. Polyhedron 2009, 28, 1776. [Google Scholar] [CrossRef]
- Fedaoui, D.; Bouhadja, Y.; Kaiba, K.; Guionneau, P.; Létard, J. Complexation of 2,6-Bis(3-pyrazolyl)pyridine–Bis(thiocyanato)iron(II) with a Bridging 4,4′-Bipyridine: A New Example of a Dinuclear Spin Crossover Complex. Eur. J. Inorg. Chem. 2008, 7, 1022–1023. [Google Scholar] [CrossRef]
- De Gaetano, Y.; Jeanneau, E.; Verat, A.Y.; Rechignat, L.; Bousseksou, A.; Matouzenko, G.S. Ligand-Induced Distortions and Magneto-Structural Correlations in a Family of Dinuclear Spin Crossover Compounds with Bipyridyl-Like Bridging Ligands. Eur. J. Inorg. Chem. 2013, 2013, 1015–1023. [Google Scholar] [CrossRef]
- Sciortino, N.F.; Scherl-Gruenwald, K.R.; Chastanet, G.; Halder, G.J.; Chapman, K.W.; Létard, J.F.; Kepert, C.J. Hysteretic Three-Step Spin Crossover in a Thermo-and Photochromic 3D Pillared Hofmann-type Metal–Organic Framework. Angew. Chem. Int. Ed. Engl. 2012, 124, 10301–10305. [Google Scholar] [CrossRef]
- Romstedt, H.; Spiering, H.; Gütlich, P. Modelling of two step high spin⇌low spin transitions using the cluster variation method. J. Phys. Chem. Solids 1998, 59, 1353–1362. [Google Scholar] [CrossRef]
- Li, Z.Y.; Dai, J.W.; Shiota, Y.O.; Yoshizawa, K.; Kanegawa, S.; Sato, O. Multi-Step Spin Crossover Accompanied by Symmetry Breaking in an FeIII Complex: Crystallographic Evidence and DFT Studies. Chemistry. 2013, 19, 12948–12952. [Google Scholar] [CrossRef]
- Vela, S.; Gourlaouen, C.; Fumanal, J.; Ribas-Arino, J. Disclosing the Ligand-and Solvent-Induced Changes on the Spin Transition and Optical Properties of Fe(II)-Indazolylpyridine Complexes. Magnetochemistry 2016, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Floquet, S.; Salunke, S.; Boillot, M.L.; Clément, R.; Varret, F.; Boukheddaden, K.; Rivière, E. The Spin Transition of an Iron(III) Complex Intercalated in a MnPS3 Layered Magnet. Occurrence of a Hysteresis Effect on Removal of Lattice Solvent. Chem. Mater. 2002, 14, 4164–4171. [Google Scholar] [CrossRef]
- Koike, M.; Murakami, K.; Fujinami, T.; Nishi, K.; Matsumoto, N.; Sunatsuki, Y. Syntheses, three types of hydrogen-bonded assembly structures, and magnetic properties of [FeIII(Him)2(hapen)]Y·solvent (Him = imidazole, hapen = N,N′-bis(2-hydroxyacetophenylidene)ethylenediamine, Y = BPh4−, CF3SO3−, PF6−, ClO4−, and BF4−). Inorg. Chim. Acta 2013, 399, 185–192. [Google Scholar] [CrossRef]
- Helena, J.; Shepherdab, P.; Rosab, L.; Vendiera, N.; Casatic, J.F.; Letardb, A.; Bousseksou, P.; Guionneau, G.M. High-pressure spin-crossover in a dinuclear Fe(ii) complex. Phys. Chem. 2012, 14, 5265–5271. [Google Scholar] [CrossRef]
- Real, J.A.; Bolvin, H.; Bousseksou, A.; Dworkin, A.; Kahn, O.; Varret, F.; Zarembowitch, J. Two-step spin crossover in the new dinuclear compound [Fe(bt)(NCS)2]2bpym, with bt = 2,2’-bi-2-thiazoline and bpym = 2,2’-bipyrimidine: Experimental investigation and theoretical approach. J. Am. Chem. Soc. 1992, 114, 4650–4658. [Google Scholar] [CrossRef]
- Real, J.A.; Gaspar, A.B.; Muñoz, M.C.; Gütlich, P.; Ksenofontov, V.; Spiering, H. Bipyrimidine-Bridged Dinuclear Iron(II) Spin Crossover Compounds. Top. Curr. Chem. 2004, 233, 167. [Google Scholar]
- Köppen, H.; Müller, E.; Köhler, C.; Spiering, H.; Meissner, E.; Gütlich, P. Unusual spin-transition anomaly in the crossover system [Fe(2-pic)3] Cl2_EtOH. Chem. Phys. Lett. 1982, 91, 348–352. [Google Scholar] [CrossRef]
- Jakobi, R.; Spiering, H.; Gütlich, P. Thermodynamics of the spin transition in [FexZn1-x(2-pic)3]Cl2_EtOH. J. Phys. Chem. Sol. 1988, 53, 267–275. [Google Scholar] [CrossRef]
- Klein, Y.M.; Sciortino, N.F.; Ragon, F.; Housecroft, C.E.; Kepert, C.J.; Neville, S.M. Spin crossover intermediate plateau stabilization in a flexible 2-D Hofmann-type coordination polymer. Chem. Commun. 2014, 50, 3838. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, R.; Arai, M.; Hori, A.; Takata, M.; Kitao, S.; Seto, M.; Kitagawa, S.; Ohba, M. Modulation of Spin-Crossover Behavior in an Elongated and Flexible Hofmann-Type Porous Coordination Polymer. J. Inorg. Organomet. Polym. 2013, 23, 104–110. [Google Scholar] [CrossRef]
- Cointe, M.B.; Moussa, N.O.; Trzop, E.; Moréac, A.; Molnar, G.; Toupet, L.; Bousseksou, A.; Létard, J.F.; Matouzenko, G.S. Symmetry breaking and light-induced spin-state trapping in a mononuclear FeII complex with the two-step thermal conversion. Phys. Rev. B. 2010, 82, 214106. [Google Scholar] [CrossRef]
- Paez-Espejo, M.; Sy, M.; Boukheddaden, K. Elastic Frustration Causing Two-Step and Multistep Transitions in Spin-Crossover Solids: Emergence of Complex Antiferroelastic Structures. J. Am. Chem. Soc. 2016, 138, 3202–3210. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanaka, K.; Bréfuel, N.; Cailleau, H.; Létard, J.F.; Ravy, S.; Fertey, P.; Nishino, M.; Miyashita, S.; Collet, E. Ordering phenomena of high-spin/low-spin states in stepwise spin-crossover materials described by the ANNNI model. Phys. Rev. B Condens. Mater. Phys. 2016, 93, 014419. [Google Scholar] [CrossRef]
- Ortega-Villar, N.; Muñoz, M.; Real, J. Symmetry Breaking in Iron(II) Spin-Crossover Molecular Crystals. Magnetochemistry 2016, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Trzop, E.; Zhang, D.; Piñeiro-Lopez, L.; Valverde-Muñoz, F.J.; Muñoz, M.C.; Palatinus, L.; Guerin, L.; Cailleau, H.; Real, J.A.; Collet, E. Inside Back Cover: First Step Towards a Devil’s Staircase in Spin-Crossover Materials Angew. Chem. Int. Ed. 2016, 55, 8675. [Google Scholar] [CrossRef]
- Murnaghan, K.D.; Carbonera, C.; Toupet, L.; Griffin, M.; Dirtu, M.M.; Desplanches, C.; Garcia, Y.; Collet, E.; Létard, J.F.; Morgan, G.G. Spin-State Ordering on One Sub-lattice of a Mononuclear Iron(III) Spin Crossover Complex Exhibiting LIESST and TIESST. Chem. Eur. J. 2014, 20, 5613. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-Y.; Ohtsu, H.; Kojima, T.; Dai, J.-W.; Yoshida, T.; Breedlove, B.K.; Zhang, W.-X.; Iguchi, H.; Sato, O.; Kawano, M.; et al. Direct Observation of Ordered High-Spin–Low-Spin Intermediate States of an Iron(III) Three-Step Spin-Crossover Complex. Angew. Chem. Int. Ed. 2016, 55, 5184–5189. [Google Scholar] [CrossRef] [PubMed]
- Hayami, S.; Nakaya, M.; Ohmagari, H.; Alao, A.S.; Nakamura, M.; Ohtani, R.; Yamaguchi, R.; Kuroda-Sowa, T.; Clegg, J.K. Spin-crossover behaviors in solvated cobalt(ii) compounds. Dalton Trans. 2015, 44, 9345–9348. [Google Scholar] [CrossRef] [Green Version]
- Bauer, W.; Pfaffeneder, T.; Achterhold, K.; Weber, B. Complete Two-Step Spin-Transition in a 1D Chain Iron (II) Complex with a 110-K Wide Intermediate Plateau. Eur. J. Inorg. Chem. 2011, 21, 3183–3192. [Google Scholar] [CrossRef]
- Dirtu, M.M.; Schmit, F.; Naik, A.D.; Rusu, I.; Rotaru, A.; Rackwitz, S.; Wolny, J.A.; Schunemann, V.; Spinu, L.; Garcia, Y. Two-Step Spin Transition in a 1D FeII 1,2,4-Triazole Chain Compound Chem. Eur. J. 2015, 21, 5843–5855. [Google Scholar] [CrossRef]
- Neville, S.M.; Leita, B.A.; Halder, G.J.; Kepert, C.J.; Moubaraki, B.; Letard, J.F.; Murray, K.S. Understanding the Two-Step Spin-Transition Phenomenon in Iron(II) 1D Chain Materials Chem. Eur. J. 2008, 14, 10123–10133. [Google Scholar] [CrossRef]
- Sorai, M.; Seki, S. Phonon coupled cooperative low-spin 1A1high-spin 5T2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals. J. Phys. Chem. Solids 1974, 35, 555–570. [Google Scholar] [CrossRef]
- Wajnflasz, J.; Pick, R. Transition low spin»-« High spin in Fe2+ complex. J. Phys. Colloq. 1971, 32, C1-91–C1-92. [Google Scholar] [CrossRef]
- Bousseksou, A.; Nasser, J.; Linares, J.; Boukheddaden, K.; Varret, F. Ising-like model for the two-step spin-crossover. J. Phys. I Fr. 1992, 2, 1381–1403. [Google Scholar] [CrossRef]
- Nishino, M.; Miyashita, S.; Boukheddaden, K. Effective interaction range in the spin crossover phenomenon: Wajnflasz and domain models. J. Chem. Phys. 2003, 118, 4594. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Linares, J.; Codjovi, E.; Varret, F.; Niel, V.; Real, J.A. Dynamical ising-like model for the two-step spin-crossover systems. J. Appl. Phys. 2003, 93, 7103–7105. [Google Scholar] [CrossRef] [Green Version]
- Traiche, R.; Sy, M.; Boukheddaden, K. Elastic Frustration in 1D Spin-Crossover Chains: Evidence of Multi-Step Transitions and Self-Organizations of the Spin States. J. Phys. Chem. C. 2018, 122, 4083–4096. [Google Scholar] [CrossRef]
- Pillet, S.; Bendeif, E.E.; Bonnet, S.; Shepherd, H.J.; Guionneau, P. Multimetastability, phototrapping, and thermal trapping of a metastable commensurate superstructure in a Fe spin-crossover compound. Phys. Rev. B Condens. Matter Phys. 2012, 86, 064106. [Google Scholar] [CrossRef] [Green Version]
- Collet, E.; Watanabe, H.; Brefuel, N.; Palatinus, L.; Roudaut, L.; Toupet, L.; Tanaka, K.; Tuchagues, J.P.; Fertey, P.; Ravy, S.A. Aperiodic Spin State Ordering of Bistable Molecules and Its Photoinduced Erasing. Phys. Rev. Lett. 2012, 109, 257206. [Google Scholar] [CrossRef]
- Gaspar, A.B.; Ksenofontov, V.; Reiman, S.; Gutlich, P.; Thompson, A.L.; Goeta, A.E.; Munoz, M.C.; Real, J.A. Mössbauer Investigation of the Photoexcited Spin States and Crystal Structure Analysis of the Spin-Crossover Dinuclear Complex [{Fe(bt)(NCS)2}2bpym] (bt = 2,2′-Bithiazoline, bpym = 2,2′-Bipyrimidine). Chem. Eur. J. 2006, 12, 9289–9298. [Google Scholar] [CrossRef]
- Fitzpatrick, A.J.; Trzop, E.; Muller-Bunz, H.; Dirtu, M.M.; Garcia, Y.; Collet, E.; Morgan, G.G. Electronic vs. structural ordering in a manganese(iii) spin crossover complex. Chem. Commun. 2015, 51, 17540–17543. [Google Scholar] [CrossRef]
- Chernyshov, D.; Hostettler, M.; Tornroos, K.W.; Burgi, H.B. Ordering Phenomena and Phase Transitions in a Spin-Crossover Compound—Uncovering the Nature of the Intermediate Phase of [Fe(2-pic)3]Cl2⋅EtOH. Angew. Chem. Int. Ed. 2003, 42, 3825–3830. [Google Scholar] [CrossRef]
- Popa, A.; Stoleriua, L.; Enachescu, C. Tutorial on the elastic theory of spin crossover materials. J. Appl. Phys. 2021, 129, 131101. [Google Scholar] [CrossRef]
- Azzolina, G.; Bertoni, R.; Collet, E. General Landau theory of non-symmetry-breaking and symmetry-breaking spin transition materials. J. App. Phys. 2021, 129, 085106. [Google Scholar] [CrossRef]
- Slimani, A.; Boukheddaden, K.; Varret, F.; Oubouchou, H.; Nishino, M.; Miyashita, S. Microscopic spin-distortion model for switchable molecular solids: Spatiotemporal study of the deformation field and local stress at the thermal spin transition. Phys. Rev. 2013, 87, 014111. [Google Scholar] [CrossRef]
- Boukheddaden, K.; Traiche, R.; Oubouchou, H.; Linares, J. Multistep Relaxations in a Spin-Crossover Lattice with Defect: A Spatiotemporal Study of the Domain Propagation. Magnetochemistry 2016, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Enachescu, C.; Stoleriu, L.; Stancu, A.; Hauser, A. Model for Elastic Relaxation Phenomena in Finite 2D Hexagonal Molecular Lattices. Phys. Rev. Lett. 2009, 102, 257204. [Google Scholar] [CrossRef] [Green Version]
- Enachescu, C.; Nishino, M.; Miyashita, S.; Stoleriu, L.; Stancu, A. Monte Carlo Metropolis study of cluster evolution in spin-crossover solids within the framework of a mechanoelastic model. Phys. Rev. B 2012, 86, 054114. [Google Scholar] [CrossRef]
- Nishino, M.; Miyashita, S. Effect of the short-range interaction on critical phenomena in elastic interaction systems. Phys. Rev. B 2013, 88, 014108. [Google Scholar] [CrossRef] [Green Version]
- Enachescu, C.; Stoleriu, L.; Nishino, M.; Miyashita, S.; Stancu, A.; Lorenc, M.; Bertoni, R.; Cailleau, H.; Collet, E. Theoretical approach for elastically driven cooperative switching of spin-crossover compounds impacted by an ultrashort laser pulse. Phys. Rev. B. 2017, 95, 224107. [Google Scholar] [CrossRef] [Green Version]
- Stoleriu, L.; Nishino, M.; Miyashita, S.; Stancu, A.; Hauser, A.; Enachescu, C. Cluster evolution in molecular three-dimensional spin-crossover systems. Phys. Rev. B 2017, 96, 064115. [Google Scholar] [CrossRef] [Green Version]
- Nishino, M.; Miyashita, S.; Rikvold, P.A. Nontrivial phase diagram for an elastic interaction model of spin crossover materials with antiferromagnetic-like short-range interactions. Phys. Rev. B 2017, 96, 144425. [Google Scholar] [CrossRef] [Green Version]
- Enachescu, C.; Nicolazzi, W. Elastic models, lattice dynamics and finite size effects in molecular spin crossover systems. Comptes Rendus Chim. 2018, 21, 1179–1195. [Google Scholar] [CrossRef]
- Sorai, M. Heat Capacity Studies of Spin Crossover Systems; Springer: Berlin/Heidelberg, Germany, 2004; Volume 235, pp. 135–170. [Google Scholar]
- Singh, Y.; Oubouchou, H.; Nishino, M.; Miyashita, S.; Boukheddaden, K. Elastic-frustration-driven unusual magnetoelastic properties in a switchable core-shell spin-crossover nanostructure. Phys. Rev. B 2020, 101, 054105. [Google Scholar] [CrossRef]
- Miyashita, S.; Konishi, Y.; Nishino, M.; Tokoro, H.; Rikvold, P.A. Realization of the mean-field universality class in spin-crossover materials. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 014105. [Google Scholar] [CrossRef] [Green Version]
- Boukheddaden, K.; Nishino, M.; Miyashita, S.; Varret, F. Molecular Dynamics and Transfer Integral Investigations of an Elastic Anharmonic Model for Phonon-Induced Spin Crossover. Phys. Rev. Lett. 2008, 100, 177206. [Google Scholar] [CrossRef]
- Ndiaye, M.; Belmouri, N.; Linares, J.; Boukheddaden, K. Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking. Symmetry 2021, 13, 828. [Google Scholar] [CrossRef]
Spin Configurations | nn Equilibrium Distances | nnn Equilibrium Distances | |||
---|---|---|---|---|---|
HS1 = HS1-HS2 = HS2 | |||||
LS1 = LS1-LS2 = LS2 | |||||
HS1 = HS1-HS2 = LS2 | |||||
HS1 = HS1-LS2 = LS2 | |||||
HS1 = LS1-LS2 = LS2 | |||||
HS1 = LS1-HS2 = LS2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Traiche, R.; Oubouchou, H.; Boukheddaden, K. Elastic Modeling of Two-Step Transitions in Sterically Frustrated 1D Binuclear Spin-Crossover Chains. Symmetry 2021, 13, 1836. https://doi.org/10.3390/sym13101836
Traiche R, Oubouchou H, Boukheddaden K. Elastic Modeling of Two-Step Transitions in Sterically Frustrated 1D Binuclear Spin-Crossover Chains. Symmetry. 2021; 13(10):1836. https://doi.org/10.3390/sym13101836
Chicago/Turabian StyleTraiche, Rachid, Hassane Oubouchou, and Kamel Boukheddaden. 2021. "Elastic Modeling of Two-Step Transitions in Sterically Frustrated 1D Binuclear Spin-Crossover Chains" Symmetry 13, no. 10: 1836. https://doi.org/10.3390/sym13101836
APA StyleTraiche, R., Oubouchou, H., & Boukheddaden, K. (2021). Elastic Modeling of Two-Step Transitions in Sterically Frustrated 1D Binuclear Spin-Crossover Chains. Symmetry, 13(10), 1836. https://doi.org/10.3390/sym13101836