# Method for Retrieving Digital Agricultural Text Information Based on Local Matching

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Material Methods

#### 2.1. Method for Retrieving Digital Agricultural Text Information Based on Local Matching

#### 2.1.1. Construction of Digital Agricultural Text Tree and Query Tree

_{1}and the structural node sn

_{m}, which describes the ancestor–descendant relationship between $s{n}_{1}$ and $s{n}_{m}$; $head\left(p\right)$ and $tail\left(p\right)$ represent the start and end points of the path respectively; the distance between the nodes is defined as $dist\left(x,y\right)=\left|p\right|-1$, where $head\left(p\right)=x,tail\left(p\right)=y$, and $\left|p\right|$ represents the number of nodes in the path.

#### 2.1.2. Agricultural Text Information Retrieval

#### 2.2. Experimental Materials

#### 2.2.1. Experimental Setup of Recall Rate and Precision Rate

#### 2.2.2. Experimental Setup for Retrieval Efficiency

## 3. Results

#### 3.1. Comparative Test of Retrieval Effect

#### 3.1.1. Recall Rate

#### 3.1.2. Precision Rate

#### 3.2. Comparison Experiment of the Retrieval Efficiency

#### 3.2.1. Comparison of Retrieval Time

#### 3.2.2. Comparison of Retrieval Efficiency

## 4. Discussion

#### 4.1. Discussion on the Retrieval Effect of the Three Methods

#### 4.1.1. Recall Rate

#### 4.1.2. Precision Rate

#### 4.2. Discussion on the Retrieval Efficiency of the Three Methods

#### 4.2.1. Retrieval Time

#### 4.2.2. Retrieval Efficiency

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Wu, Z.; Gao, K.; Wang, Z.L. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction. J. Appl. Phys.
**2017**, 121, 23–26. [Google Scholar] [CrossRef] - Yang, Y.G.; Sun, S.J.; Wang, Y. Quantum oblivious transfer based on a quantum symmetrically private information retrieval protocol. Int. J. Theor. Phys.
**2015**, 54, 910–916. [Google Scholar] [CrossRef] - Hu, Y.T.; Hui, F.P. The Application of Metadata Methods in the Perspective of Digital Humanities: A Case Study of Agricultural Heritage. Library
**2019**, 000, 82–87. [Google Scholar] - Ming, Y.; Cuicui, F.; Fuchuan, M. Research on Innovation of Information Resource Management in the Age of Big Data. Res. Libr. Sci.
**2019**, 6, 56–61. [Google Scholar] - Wang, L. Text information retrieval algorithm simulation analysis under massive data. Comput. Simul.
**2016**, 33, 429–432. [Google Scholar] - Junnila, V.; Laihonen, T. Information retrieval with varying number of input clues. IEEE Trans. Inf. Theory
**2016**, 62, 625–638. [Google Scholar] [CrossRef] - Shi, J.; Liu, D.; Cui, L. Retrieval of contaminated information using random lasers. Appl. Phys. Lett.
**2015**, 106, 685. [Google Scholar] - Besson, M.; Kutas, M.; Vanpetten, C. Effect of semantic expectancy upon information-retrieval. Psychophysiology
**2016**, 23, 425–426. [Google Scholar] - Khennak, I.; Drias, H. An accelerated PSO for query expansion in web information retrieval: Application to medical dataset. Appl. Intell.
**2017**, 47, 793–808. [Google Scholar] [CrossRef] - Krause, C.; Johannsen, D.; Deeb, R. An SQL-based query language and engine for graph pattern matching. Networks
**2016**, 20, 345–359. [Google Scholar] - Liang, M.; Du, J.; Cao, S. Super-resolution reconstruction based on multisource bidirectional similarity and non-local similarity matching. IET Image Process.
**2015**, 9, 931–942. [Google Scholar] [CrossRef] - Subber, W.; Matouš, K. Asynchronous space–time algorithm based on a domain decomposition method for structural dynamics problems on non-matching meshes. Comput. Mech.
**2016**, 57, 211–235. [Google Scholar] [CrossRef] - Zhang, X.; Tan, C.L. Handwritten word image matching based on Heat Kernel Signature. Pattern Recognit.
**2015**, 48, 3346–3356. [Google Scholar] [CrossRef] - Bors, A.G.; Papushoy, A. Image retrieval based on query by saliency content. Digit. Signal Process.
**2015**, 36, 156–173. [Google Scholar] - Kotsifakos, A.; Karlsson, I.; Papapetrou, P. Embedding-based subsequence matching with gaps-range-tolerances: A Query-By-Humming application. VLDB J.
**2015**, 24, 519–536. [Google Scholar] [CrossRef] - Duch, A.; Lau, G.; Martínez, C. On the cost of fixed partial match queries in K -d trees. Algorithmica
**2016**, 75, 1–40. [Google Scholar] [CrossRef] [Green Version] - Tang, J.; Luo, J.; Tjahjadi, T. Robust Arbitrary-View Gait Recognition Based on 3D partial similarity matching. IEEE Trans. Image Process.
**2016**, 26, 7–22. [Google Scholar] [CrossRef] [PubMed] - Mei, K. Opportunities for women, minorities in information retrieval. Commun. ACM
**2017**, 60, 10–11. [Google Scholar] - Lyu, H.; Zhang, J.; Zha, G. Developing a two-step retrieval method for estimating total suspended solid concentration in Chinese turbid inland lakes using Geostationary Ocean Colour Imager (GOCI) imagery. Int. J. Remote Sens.
**2015**, 36, 1385–1405. [Google Scholar] [CrossRef] - Niazi, S.K.; Alam, S.M.; Ahmad, S.I. Partial-area method in bioequivalence assessment: Naproxen. Biopharm. Drug Dispos.
**2015**, 18, 103–116. [Google Scholar] [CrossRef] - Gao, W.; Zhu, L.; Guo, Y.; Wang, K. Ontology learning algorithm for similarity measuring and ontology mapping using linear programming. J. Intell. Fuzzy Syst.
**2017**, 33, 3153–3163. [Google Scholar] [CrossRef] - Gao, W.; Wang, W. A tight neighborhood union condition on fractional (g, f, n’, m)-critical deleted graphs. Colloq. Math.
**2017**, 149, 291–298. [Google Scholar] [CrossRef] - Shirakol, S.; Kalyanshetti, M.; Hosamani, S.M. QSPR analysis of certain distance based topological indices. Appl. Math. Nonlinear Sci.
**2019**, 4, 371–385. [Google Scholar] [CrossRef] [Green Version] - Dewasurendra, M.; Vajravelu, K. On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer. Appl. Math. Nonlinear Sci.
**2018**, 3, 1–14. [Google Scholar] [CrossRef]

**Table 1.**Precision rate of agricultural information retrieval method based on maximum weight matching calculation.

Test Set Number/Individual | Test Times | ||||
---|---|---|---|---|---|

First Test/% | Second Test/% | Third Test/% | Fourth Test/% | Fifth Test/% | |

50 | 94.4 | 94.5 | 93.4 | 94.5 | 94.6 |

100 | 94.5 | 94.3 | 93.4 | 94.3 | 94.2 |

150 | 94.6 | 93.2 | 94.5 | 93.2 | 94.5 |

200 | 94.2 | 93.9 | 94.2 | 93.9 | 94.8 |

250 | 94.5 | 93.7 | 93.5 | 93.5 | 93.8 |

300 | 94.8 | 93.8 | 93.5 | 94.8 | 94.8 |

350 | 94.8 | 94.8 | 94.8 | 93.8 | 94.9 |

400 | 94.8 | 94.9 | 93.8 | 94.1 | 93.4 |

450 | 93.5 | 93.9 | 94.1 | 93.8 | 93.4 |

500 | 94.9 | 94.7 | 93.8 | 93.8 | 94.5 |

Precision ratio/% | 94.5 | 94.1 | 94.0 | 94.0 | 94.3 |

Test Set Number/Individual | Test Times | ||||
---|---|---|---|---|---|

First Test/% | Second Test/% | Third Test/% | Fourth Test/% | Fifth Test/% | |

50 | 95.8 | 95.4 | 96.8 | 96.5 | 96.5 |

100 | 96.2 | 95.6 | 97.1 | 96.8 | 96.6 |

150 | 96.8 | 96.8 | 97.2 | 96.7 | 95.6 |

200 | 96.7 | 96.5 | 96.2 | 95.9 | 95.8 |

250 | 95.9 | 96.6 | 96.4 | 95.8 | 96.5 |

300 | 95.8 | 95.6 | 97.1 | 95.6 | 95.8 |

350 | 96.8 | 95.8 | 96.5 | 95.8 | 96.7 |

400 | 96.5 | 96.2 | 95.6 | 97.1 | 95.6 |

450 | 95.8 | 96.8 | 95.8 | 97.2 | 96.8 |

500 | 96.7 | 95.1 | 96.5 | 96.2 | 96.5 |

Precision ratio/% | 96.3 | 96.0 | 96.5 | 96.3 | 96.2 |

Test set Number/Individual | Test Times | ||||
---|---|---|---|---|---|

First Test/% | Second Test/% | Third Test/% | Fourth Test/% | Fifth Test/% | |

50 | 99.5 | 99.2 | 99.3 | 99.3 | 100 |

100 | 99.5 | 99.8 | 99.6 | 99.4 | 99.5 |

150 | 99.1 | 99.3 | 99.7 | 100 | 99.1 |

200 | 99.2 | 99.4 | 99.4 | 99.6 | 99.2 |

250 | 99.5 | 99.6 | 99.8 | 99.8 | 99.5 |

300 | 99.6 | 99.6 | 99.4 | 99.9 | 99.8 |

350 | 99.8 | 99.5 | 99.6 | 99.5 | 99.9 |

400 | 99.9 | 99.8 | 99.6 | 99.1 | 99.5 |

450 | 99.7 | 99.7 | 100 | 99.2 | 99.1 |

500 | 100 | 99.6 | 99.4 | 100 | 99.2 |

Precision ratio/% | 99.6 | 99.6 | 99.6 | 99.6 | 99.5 |

Test the Number of Pages/Tens of Thousands of Pages | This Paper Method/s | Agricultural Information Retrieval Method Based on Maximum Weight Matching Calculation/s | Agricultural Information Retrieval Method Based on Dual Semantic Space/s |
---|---|---|---|

2 | 2.5 | 3.2 | 6.8 |

4 | 3.2 | 4.2 | 8.2 |

6 | 3.2 | 5.1 | 10.2 |

8 | 4.2 | 6.8 | 13.8 |

10 | 4.8 | 7.2 | 15.4 |

12 | 5.2 | 9.1 | 19.4 |

14 | 5.5 | 9.9 | 23.4 |

16 | 6.8 | 11.2 | 26.7 |

18 | 8.6 | 12.9 | 28.9 |

20 | 9.1 | 15.2 | 32.2 |

Mean time/s | 5.3 | 8.5 | 18.5 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Song, Y.; Wang, M.; Gao, W.
Method for Retrieving Digital Agricultural Text Information Based on Local Matching. *Symmetry* **2020**, *12*, 1103.
https://doi.org/10.3390/sym12071103

**AMA Style**

Song Y, Wang M, Gao W.
Method for Retrieving Digital Agricultural Text Information Based on Local Matching. *Symmetry*. 2020; 12(7):1103.
https://doi.org/10.3390/sym12071103

**Chicago/Turabian Style**

Song, Yue, Minjuan Wang, and Wanlin Gao.
2020. "Method for Retrieving Digital Agricultural Text Information Based on Local Matching" *Symmetry* 12, no. 7: 1103.
https://doi.org/10.3390/sym12071103