# A New Experimental Method for Determining the Thickness of Thin Surface Layers of Intensive Plastic Deformation Using Electron Backscatter Diffraction Data

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Material and Process of Deformation

_{3}COOH + 10% HClO

_{4}cooled to 8 °C. The average polishing time was 4 s at a voltage of 40 V and a current density of 0.3 A/mm

^{2}.

## 3. New Method and Results

_{3}Mg

_{2}, Al

_{6}Mn, Mg

_{2}Si, or AlFeSiMn. In Figure 2b, the red lines show the deviation of M

_{j}from its mean value with a confidence probability of 95%.

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Griffiths, B.J.; Furze, D.C. Tribological Advantages of White Layers Produced by Machining. J. Tribol.
**1987**, 109, 338–342. [Google Scholar] [CrossRef] - Pantazopoulos, G.; Tsolakis, A.; Psyllaki, P.; Vazdirvanidis, A. Wear and degradation modes in selected vehicle tribosystems. Tribol. Ind.
**2015**, 37, 72–80. [Google Scholar] - Renz, A.; Prakash, B.; Hardell, J.; Lehmann, O. High-temperature sliding wear behaviour of Stellite®12 and Tribaloy®T400. Wear
**2018**, 402, 148–159. [Google Scholar] [CrossRef] - Kuznetsova, E.; Gershman, I.; Mironov, A.; Podrabinnik, P.; Peretyagin, P.Y. The Effect of Elements of Secondary Structures on the Wear Resistance of Steel in Friction against Experimental Aluminum Alloys for Monometallic Journal Bearings. Lubricants
**2019**, 7, 21. [Google Scholar] [CrossRef] [Green Version] - Zhao, X.H.; Nie, D.W.; Xu, D.S.; Liu, Y.; Hu, C.H. Effect of Gradient Nanostructures on Tribological Properties of 316L Stainless Steel with High Energy Ion Implantation Tungsten Carbide. Tribol. Trans.
**2019**, 62, 189–197. [Google Scholar] [CrossRef] - Sharma, G.; Dwivedi, D.K. Diffusion bonding of pre-friction treated structural steel with reversion of deformation induced grains. Mater. Sci. Eng. A
**2017**, 696, 393–399. [Google Scholar] [CrossRef] - Chen, Y.; Yang, Y.; Feng, Z.; Huang, B.; Luo, X.; Zhang, W. The depth-dependent gradient deformation bands in a sliding friction treated Al-Zn-Mg-Cu alloy. Mater. Charact.
**2017**, 132, 269–279. [Google Scholar] [CrossRef] - Savrai, R.A.; Makarov, A.; Malygina, I.; Volkova, E. Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part I: Microstructure and surface properties. Mater. Sci. Eng. A
**2018**, 734, 506–512. [Google Scholar] [CrossRef] - Cao, H.; Huo, W.; Ma, S.; Zhang, Y.; Zhou, L. Microstructure and Corrosion Behavior of Composite Coating on Pure Mg Acquired by Sliding Friction Treatment and Micro-Arc Oxidation. Materials
**2018**, 11, 1232. [Google Scholar] [CrossRef] [Green Version] - Zhang, W.; Lu, J.; Huo, W.; Zhang, Y.; Wei, Q. Microstructural evolution of AZ31 magnesium alloy subjected to sliding friction treatment. Philos. Mag.
**2018**, 98, 1576–1593. [Google Scholar] [CrossRef] - Zheng, G.; Luo, X.; Yang, Y.; Kou, Z.; Huang, B.; Zhang, Y.; Zhang, W. The gradient structure in the surface layer of an Al-Zn-Mg-Cu alloy subjected to sliding friction treatment. Results Phys.
**2019**, 13, 102318. [Google Scholar] [CrossRef] - Griffiths, B.J. Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes. J. Tribol.
**1987**, 109, 525–530. [Google Scholar] [CrossRef] - Sanabria, V.; Mueller, S.; Gall, S.; Reimers, W.; Müller, S. Investigation of Friction Boundary Conditions during Extrusion of Aluminium and Magnesium Alloys. Key Eng. Mater.
**2014**, 611, 997–1004. [Google Scholar] [CrossRef] - Lashgari, H.; Kong, C.; Asnavandi, M.; Zangeneh, S.; Lashgari, H. The effect of friction stir processing (FSP) on the microstructure, nanomechanical and corrosion properties of low carbon CoCr28Mo5 alloy. Surf. Coatings Technol.
**2018**, 354, 390–404. [Google Scholar] [CrossRef] - Alexandrov, S.; Jeng, Y.-R.; Hwang, Y.-M. Generation of a Fine Grain Layer in the Vicinity of Frictional Interfaces in Direct Extrusion of AZ31 Alloy. J. Manuf. Sci. Eng.
**2015**, 137, 051003. [Google Scholar] [CrossRef] - Alexandrov, S.; Lang, L.; Vilotić, D.; Movrin, D.; Lang, L. Generation of a Layer of Severe Plastic Deformation near Friction Surfaces in Upsetting of Steel Specimens. Metals
**2018**, 8, 71. [Google Scholar] [CrossRef] [Green Version] - Stolyarov, A.; Polyakova, M.; Atangulova, G.; Alexandrov, S.; Lang, L. Effect of frictional conditions on the generation of fine grain layers in drwaing of thin steel wires. Metals
**2019**, 9, 819. [Google Scholar] [CrossRef] [Green Version] - Huo, W.; Hu, J.; Cao, H.; Du, Y.; Zhang, W.; Zhang, Y. Simultaneously enhanced mechanical strength and inter-granular corrosion resistance in high strength 7075 Al alloy. J. Alloy. Compd.
**2019**, 781, 680–688. [Google Scholar] [CrossRef] - Dziaszyk, S.; Payton, E.; Friedel, F.; Marx, V.; Eggeler, G. On the characterization of recrystallized fraction using electron backscatter diffraction: A direct comparison to local hardness in an IF steel using nanoindentation. Mater. Sci. Eng. A
**2010**, 527, 7854–7864. [Google Scholar] [CrossRef] - Smirnov, A.; Konovalov, A.; Muizemnek, O.Y. Modelling and simulation of strain resistance of alloys taking into account barrier effects. Diagn. Resour. Mech. Mater. Struct.
**2015**, 1, 61–72. [Google Scholar] [CrossRef] - Moussa, C.; Bernacki, M.; Besnard, R.; Bozzolo, N. Statistical analysis of dislocations and dislocation boundaries from EBSD data. Ultramicroscopy
**2017**, 179, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Schwartz, A.J.; Kumar, M.; Adams, B.L.; Field, D.P. (Eds.) Electron Backscatter Diffraction in Materials Science; Springer US: Boston, MA, USA, 2009; ISBN 978-0-387-88135-5. [Google Scholar]
- Zadvorkin, S.M.; Gorkunov, E.S.; Goruleva, L.S.; Putilova, E.A.; Maltseva, A.N. Comparison of x-ray analysis and EBSD analysis methods for residual stresses estimation in welded pipes made of 13CrVA steel. Proc. Int. Conf. Adv. Mater. Hierarchical Struct. N. Technol. Reliab. Struct.
**2019**, 2167, 020397. [Google Scholar] - Moghaddam, M.; Zarei-Hanzaki, A.; Pishbin, M.; Shafieizad, A.; Oliveira, V. Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation. Mater. Charact.
**2016**, 119, 137–147. [Google Scholar] [CrossRef] - Wang, S.; Holm, E.; Suni, J.; Alvi, M.H.; Kalu, P.N.; Rollett, A.D. Modeling the recrystallized grain size in single phase materials. Acta Mater.
**2011**, 59, 3872–3882. [Google Scholar] [CrossRef] - Na, T.-W.; Park, H.-K.; Park, C.-S.; Park, J.-T.; Hwang, N.-M. Misorientation angle analysis near the growth front of abnormally growing grains in 5052 aluminum alloy. Acta Mater.
**2016**, 115, 224–229. [Google Scholar] [CrossRef] - Ma, R.; Peng, C.; Cai, Z.; Wang, R.; Zhou, Z.; Li, X.; Cao, X. Enhanced strength of the selective laser melted Al-Mg-Sc-Zr alloy by cold rolling. Mater. Sci. Eng. A
**2020**, 775, 138975. [Google Scholar] [CrossRef] - Gourdet, S.; Montheillet, F. A model of continuous dynamic recrystallization. Acta Mater.
**2003**, 51, 2685–2699. [Google Scholar] [CrossRef] - Rollett, A.; Humphreys, F.; Rohrer, G.S.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier Ltd.: Amsterdam, The Netherlands, 2004. [Google Scholar]
- EDAX. OIM Analysis User Manual; Ametek: Berwyn, PA, USA, 2007. [Google Scholar]
- Wright, S.I.; Nowell, M.M.; Field, D. A Review of Strain Analysis Using Electron Backscatter Diffraction. Microsc. Microanal.
**2011**, 17, 316–329. [Google Scholar] [CrossRef] - Oxford Instruments HKL. Oxford Channel 5 User Manual; Oxford Instruments HKL: Hobro, Denmark, 2007. [Google Scholar]
- Fujiyama, K.; Mori, K.; Matsubara, Y.; Kimachi, H.; Saito, T.; Hino, T.; Ishii, R. Crystallographic assessment of creep damage in high chromium steel weld joints using EBSD observation. Energy Mater.
**2009**, 4, 61–69. [Google Scholar] [CrossRef]

**Figure 1.**Illustration of the test: (

**a**) experimental set-up (1—container, 2—steel die with a cone half-angle of 1.5°, 3—pipe, 4—specimen, 5—punch), (

**b**) nominal dimensions of specimens after the test.

**Figure 2.**An all-Euler electron backscatter diffraction (EBSD) image superimposed on a band contrast image of the undeformed specimen microstructure in the region close to the surface (

**a**), and the total length of the boundaries ${M}_{j}$ in the layer, as dependent on the distance from the edge of the undeformed specimen (

**b**).

**Figure 3.**An all-Euler EBSD image superimposed on a band contrast image of the deformed specimen microstructure in the region close to the surface (

**a**), the total length of the boundaries ${L}_{i}$ in the layer (

**b**), and the parameter ${K}_{i}$ (

**c**), as dependent on the distance from the edge of the deformed specimen after pushing (

**b**).

**Figure 5.**An all-Euler EBSD image superimposed on a band contrast image of the specimen microstructure after grinding in the subsurface region (

**a**), the parameter ${K}_{i}$ (

**b**), and hardness $H$ (

**c**) as dependent on the distance from the surface edge.

**Figure 6.**Definition of the local misorientation at point A when the misorientation at all neighbors is below ${\Theta}_{lim}$ (

**a**), and when the misorientation at points 1 and 2 with respect to A above ${\Theta}_{lim}$ (

**b**). The black line corresponds to the boundary with $\Theta >{\Theta}_{lim}$.

**Figure 7.**A “strain” field distribution map superimposed on a band contrast image for specimens after annealing (

**a**), grinding (

**b**), and pushing through a die (

**c**): the red line corresponds to the boundary of the distorted layer determined by microindentation, and the white line corresponds to the boundary of the distorted layer determined by the algorithm proposed in this paper.

**Figure 8.**A kernel average misorientation map for specimens after annealing (

**a**), grinding (

**b**), and pushing through a die (

**c**): the red line corresponds to the boundary of the distorted layer determined by microindentation, and the white line corresponds to the boundary of the distorted layer determined by the algorithm proposed in this paper.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Smirnov, A.; Smirnova, E.; Alexandrov, S.
A New Experimental Method for Determining the Thickness of Thin Surface Layers of Intensive Plastic Deformation Using Electron Backscatter Diffraction Data. *Symmetry* **2020**, *12*, 677.
https://doi.org/10.3390/sym12040677

**AMA Style**

Smirnov A, Smirnova E, Alexandrov S.
A New Experimental Method for Determining the Thickness of Thin Surface Layers of Intensive Plastic Deformation Using Electron Backscatter Diffraction Data. *Symmetry*. 2020; 12(4):677.
https://doi.org/10.3390/sym12040677

**Chicago/Turabian Style**

Smirnov, Alexander, Evgeniya Smirnova, and Sergey Alexandrov.
2020. "A New Experimental Method for Determining the Thickness of Thin Surface Layers of Intensive Plastic Deformation Using Electron Backscatter Diffraction Data" *Symmetry* 12, no. 4: 677.
https://doi.org/10.3390/sym12040677