Asymmetric Perfect Absorption and Lasing of Nonlinear Waves by a Complex δ-Potential
Abstract
:1. Introduction
2. The Model
3. The Main Results
3.1. Symmetric and Asymmetric Perfectly Absorbed Flows
3.2. Stability of Perfectly Absorbed Nonlinear Currents
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BEC | Bose–Einstein condensate |
CPA | coherent perfect absorption |
NLSE | nonlinear Scrödinger equation |
SS | spectral singularity |
References
- Naimark, M.A. Investigation ofthe spectrum and the expansion in eigenfunctions of a nonselfadjoint operator of the second order on a semi-axis. Tr. Mosk. Mat. Obs. 1954, 3, 181–270. [Google Scholar]
- Schwartz, J. Some non-selfadjoint operators. Commun. Pure Appl. Math. 1960, 13, 609. [Google Scholar] [CrossRef]
- Chong, Y.D.; Ge, L.; Cao, H.; Stone, A.D. Coherent perfect absorbers: Time-reversed lasers. Phys. Rev. Lett. 2010, 105, 053901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khapalyuk, A.P. Electromagnetic field inside a plane-parallel plate in a resonance absorption regime. Dokl. Akad. Nauk BelSSR 1962, 6, 301. [Google Scholar]
- Zharov, A.A.; Zaboronkova, T.M. On the optimal absorption of electromagnetic waves by finite plasma structures. Fiz. Plazmy 1983, 9, 995. [Google Scholar]
- Poladian, L. Resonance mode expansions and exact solutions for nonuniform gratings. Phys. Rev. E 1996, 54, 2963. [Google Scholar] [CrossRef]
- Rosanov, N.N. Antilaser: Resonance absorption mode or coherent perfect absorption? Phys. Usp. 2017, 60, 818. [Google Scholar] [CrossRef]
- Vainberg, B. On the analytical properties of the resolvent for a certain class of operator-pencils. Math. USSR Sb. 1968, 6, 241. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Phys. Rev. Lett. 2009, 102, 220402. [Google Scholar] [CrossRef] [Green Version]
- Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 2010, 82, 031801(R). [Google Scholar] [CrossRef] [Green Version]
- Wan, W.; Chong, Y.; Ge, L.; Noh, H.; Stone, A.D.; Cao, H. Time-reversed lasing and interferometric control of absorption. Science 2011, 331, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranov, D.G.; Krasnok, A.; Shegai, T.; Alú, A.; Chong, Y. Coherent perfect absorbers: Linear control of light with light. Nat. Rev. Mater. 2017, 2, 17064. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Z.; Bai, P.; Hang, Z.H.; Lai, Y. Acoustic coherent perfect absorbers. New J. Phys. 2014, 16, 033026. [Google Scholar] [CrossRef] [Green Version]
- Müllers, A.; Santra, B.; Baals, C.; Jiang, J.; Benary, J.; Labouvie, R.; Zezyulin, D.A.; Konotop, V.V.; Ott, H. Coherent perfect absorption of nonlinear matter waves. Sci. Adv. 2018, 4, eaat6539. [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. Nonlinear spectral singularities for confined nonlinearities. Phys. Rev. Lett. 2013, 110, 260402. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.N.; Dutta Gupta, S. Light-controlled perfect absorption of light. Opt. Lett. 2013, 38, 5252–5255. [Google Scholar] [CrossRef] [Green Version]
- Zezyulin, D.A.; Konotop, V.V. Nonlinear currents in a ring-shaped waveguide with balanced gain and dissipation. Phys. Rev. A 2016, 94, 043853. [Google Scholar] [CrossRef] [Green Version]
- Zezyulin, D.A.; Ott, H.; Konotop, V.V. Coherent perfect absorber and laser for nonlinear waves in optical waveguide arrays. Opt. Lett. 2018, 43, 5901. [Google Scholar] [CrossRef]
- Gaididei, Y.B.; Mingaleev, S.F.; Christiansen, P.L. Curvature-induced symmetry breaking in nonlinear Schrödinger models. Phys. Rev. E 2000, 62, R53. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.K.; Weinstein, M.I. Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation. J. Stat. Phys. 2004, 116, 881. [Google Scholar] [CrossRef] [Green Version]
- Theocharis, G.; Kevrekidis, P.G.; Frantzeskakis, D.J.; Schmelcher, P. Symmetry breaking in symmetric and asymmetric double-well potentials. Phys. Rev. E 2006, 74, 056608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matuszewski, M.; Malomed, B.A.; Trippenbach, M. Spontaneous symmetry breaking of solitons trapped in a double-channel potential. Phys. Rev. A 2007, 75, 063621. [Google Scholar] [CrossRef] [Green Version]
- Zezyulin, D.A.; Lebedev, M.E.; Alfimov, G.L.; Malomed, B.A. Symmetry breaking in competing single-well linear-nonlinear potentials. Phys. Rev. E 2018, 98, 042209. [Google Scholar] [CrossRef] [Green Version]
- Brazhnyi, V.A.; Konotop, V.V.; Pérez-García, V.M.; Ott, H. Dissipation-induced coherent structures in Bose-Einstein condensates. Phys. Rev. Lett. 2009, 102, 144101. [Google Scholar] [CrossRef] [Green Version]
- Gericke, T.; Würtz, P.; Reitz, D.; Langen, T.; Ott, H. High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Phys. 2008, 4, 949–953. [Google Scholar] [CrossRef]
- Pitaevskii, L.; Stringari, S. Bose-Einstein Condensation; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Zezyulin, D.; Konotop, V.V.; Barontini, G.; Ott, H. Macroscopic Zeno Effect and Stationary Flows in Nonlinear Waveguides with Localized Dissipation. Phys. Rev. Lett. 2012, 109, 020405. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Delta-function potential with a complex coupling. J. Phys. A Math. Gen. 2006, 39, 13495. [Google Scholar] [CrossRef] [Green Version]
- Gantmacher, F.R. The Theory of Matrices; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zezyulin, D.A.; Konotop, V.V. Asymmetric Perfect Absorption and Lasing of Nonlinear Waves by a Complex δ-Potential. Symmetry 2020, 12, 1675. https://doi.org/10.3390/sym12101675
Zezyulin DA, Konotop VV. Asymmetric Perfect Absorption and Lasing of Nonlinear Waves by a Complex δ-Potential. Symmetry. 2020; 12(10):1675. https://doi.org/10.3390/sym12101675
Chicago/Turabian StyleZezyulin, Dmitry A., and Vladimir V. Konotop. 2020. "Asymmetric Perfect Absorption and Lasing of Nonlinear Waves by a Complex δ-Potential" Symmetry 12, no. 10: 1675. https://doi.org/10.3390/sym12101675