GPU-based Fast Motion Synthesis of Large Crowds Using Adaptive Multi-Joint Models
Abstract
:1. Introduction
2. Related Work
3. Algorithms
3.1. Motion Textures
3.2. Pixel Coverage of Characters
3.3. Motion Synthesis
3.4. Motion Catching
4. Experimental Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ijaz, K.; Sohail, S.; Hashish, S. A Survey of Latest Approaches for Crowd Simulation and Modeling using Hybrid Techniques. In Proceedings of the 17th UKSIM-AMSS International Conference on Modelling and Simulation, Cambridge, UK, 25–27 March 2015. [Google Scholar]
- Cooper, A.; Cooper, S.; Popovic, Z. Continuum Crowds. ACM Trans. Graph. 2006, 25, 3. [Google Scholar]
- Helbing, D. A fluid dynamic model for the movement of pedestrians. Complex Syst. 1992, 6, 391–415. [Google Scholar]
- Reynolds, C.W. Flocks, Herds, and Schools: A Distributed Behavioral Model. ACM SIGGRAPH Comput. Graph. 1987, 1, 25–34. [Google Scholar] [CrossRef]
- Berg, J.; Patil, S.; Sewall, J.; Manocha, D.; Lin, M. Interactive Navigation of Individual Agents in Crowded Environments. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D), Redwood City, CA, USA, 15–17 February 2008. [Google Scholar]
- Barnett, A.; Shum, H.; Komura, T. Coordinated Crowd Simulation with Topological Scene Analysis. Comput. Graph. Forum 2016, 35, 6. [Google Scholar] [CrossRef]
- Karamouzas, I.; Skinner, B.; Guy, S. A universal power law governing pedestrian interaction. Phys. Rev. Lett. 2014, 113, 238701. [Google Scholar] [CrossRef] [PubMed]
- Karamouzas, I.; Sohre, N.; Narain, R.; Guy, S. Implicit Crowds: Optimization Integrator for Robust Crowd Simulation. ACM Trans. Graph. 2017, 36, 4. [Google Scholar] [CrossRef]
- Kwon, T.; Lee, K.; Lee, J.; Takahashi, S. Group Motion Editing. ACM Trans. Graph. 2008, 27, 3. [Google Scholar]
- Kim, M.; Hyun, K.; Kim, J.; Lee, J. Synchronized Multi-Character Motion Editing. ACM Trans. Graph. 2009, 1, 28. [Google Scholar]
- Lindstrom, P.; Koller, D.; Ribarsky, W.; Hodges, L.F.; Faust, N.; Turner, G. Real-time, Continuous Level of Detail Rendering of Height Fields. In Proceedings of the ACM SIGGARPH, New Orleans, LA, USA, 4–9 August 1996. [Google Scholar]
- Rose, C.; Cohen, M.; Bodenheimer, B. Verbs and Adverbs: Multidimensional Motion Interpolation. IEEE Comput. Graph. Appl. 1998, 18, 5. [Google Scholar] [CrossRef]
- Meredith, M.; Maddock, S. Motion Capture File Formats Explained. Available online: http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0111.pdf (accessed on 1 February 2019).
- Stang, G. Calculus, 3rd ed.; Wellesley-Cambridge Press: Wellesley, MA, USA, 2017; ISBN 978-0980232752. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, M.; Kim, Y. GPU-based Fast Motion Synthesis of Large Crowds Using Adaptive Multi-Joint Models. Symmetry 2019, 11, 422. https://doi.org/10.3390/sym11030422
Sung M, Kim Y. GPU-based Fast Motion Synthesis of Large Crowds Using Adaptive Multi-Joint Models. Symmetry. 2019; 11(3):422. https://doi.org/10.3390/sym11030422
Chicago/Turabian StyleSung, Mankyu, and Yejin Kim. 2019. "GPU-based Fast Motion Synthesis of Large Crowds Using Adaptive Multi-Joint Models" Symmetry 11, no. 3: 422. https://doi.org/10.3390/sym11030422