# Bernoulli Polynomials and Their Some New Congruence Properties

^{*}

## Abstract

**:**

## 1. Introduction

**Theorem**

**1.**

**Theorem**

**2.**

**Corollary**

**1.**

**Corollary**

**2.**

**Corollary**

**3.**

**Corollary**

**4.**

## 2. Several Lemmas

**Lemma**

**1.**

**Proof.**

**Lemma**

**2.**

**Proof.**

**Lemma**

**3.**

**Proof.**

## 3. Proofs of the Theorems

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Knuth, D.E.; Buckholtz, T.J. Computation of Tangent, Euler, and Bernoulli numbers. Math. Comput.
**1967**, 21, 663–688. [Google Scholar] [CrossRef] - Hou, Y.W.; Shen, S.M. The Euler numbers and recursive properties of Dirichlet L-functions. Adv. Differ. Equ.
**2018**, 2018, 397. [Google Scholar] [CrossRef] - Liu, G.D. Identities and congruences involving higher-order Euler-Bernoulli numbers and polynonials. Fibonacci Q.
**2001**, 39, 279–284. [Google Scholar] - Kim, T. Euler numbers and polynomials associated with zeta functions. Abstr. Appl. Anal.
**2008**, 2018, 581582. [Google Scholar] [CrossRef] - Zhang, W.P. Some identities involving the Euler and the central factorial numbers. Fibonacci Q.
**1998**, 36, 154–157. [Google Scholar] - Zhao, J.H.; Chen, Z.Y. Some symmetric identities involving Fubini polynomials and Euler numbers. Symmetry
**2018**, 10, 303. [Google Scholar] - Kim, D.S.; Kim, T. Some symmetric identities for the higher-order q-Euler polynomials related to symmetry group S
_{3}arising from p-Adic q-fermionic integrals on ℤ_{p}. Filomat**2016**, 30, 1717–1721. [Google Scholar] [CrossRef] - Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-Adic invariant integral on Z
_{p}. Russ. J. Math. Phys.**2009**, 16, 93–96. [Google Scholar] [CrossRef] - Kim, T.; Kim, D.S.; Jang, G.W. A note on degenerate Fubini polynomials. Proc. Jiangjeon Math. Soc.
**2017**, 20, 521–531. [Google Scholar] - Kim, D.S.; Park, K.H. Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S
_{3}. Appl. Math. Comput.**2013**, 219, 5096–5104. [Google Scholar] [CrossRef] - Kim, T.; Kim, D.S. An identity of symmetry for the degernerate Frobenius-Euler polynomials. Math. Slovaca
**2018**, 68, 239–243. [Google Scholar] [CrossRef] - Kim, T.; Kim, S.D.; Jang, G.W.; Kwon, J. Symmetric identities for Fubini polynomials. Symmetry
**2018**, 10, 219. [Google Scholar] [CrossRef] - Kim, D.S.; Rim, S.-H.; Kim, T. Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials. J. Inequal. Appl.
**2012**, 2012, 227. [Google Scholar] [CrossRef] - Simsek, Y. Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math.
**2017**, 27, 199–212. [Google Scholar] - Guy, R.K. Unsolved Problems in Number Theory, 2nd ed.; Springer: New York, NY, USA, 1994. [Google Scholar]
- Liu, G.D. The solution of problem for Euler numbers. Acta Math. Sin.
**2004**, 47, 825–828. [Google Scholar] - Zhang, W.P.; Xu, Z.F. On a conjecture of the Euler numbers. J. Number Theory
**2007**, 127, 283–291. [Google Scholar] [CrossRef] - Cho, B.; Park, H. Evaluating binomial convolution sums of divisor functions in terms of Euler and Bernoulli polynomials. Int. J. Number Theory
**2018**, 14, 509–525. [Google Scholar] [CrossRef] - Wagstaff, S.S., Jr. Prime divisors of the Bernoulli and Euler Numbers. Number Theory Millenn.
**2002**, 3, 357–374. [Google Scholar] - Bayad, A.; Aygunes, A. Hecke operators and generalized Bernoulli-Euler polynomials. J. Algebra Number Theory Adv. Appl.
**2010**, 3, 111–122. [Google Scholar] - Kim, D.S.; Kim, T. Some p-Adic integrals on ℤ
_{p}Associated with trigonometric functions. Russ. J. Math. Phys.**2018**, 25, 300–308. [Google Scholar] [CrossRef] - Powell, B.J. Advanced problem 6325. Am. Math. Mon.
**1980**, 87, 836. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Duan, R.; Shen, S.
Bernoulli Polynomials and Their Some New Congruence Properties. *Symmetry* **2019**, *11*, 365.
https://doi.org/10.3390/sym11030365

**AMA Style**

Duan R, Shen S.
Bernoulli Polynomials and Their Some New Congruence Properties. *Symmetry*. 2019; 11(3):365.
https://doi.org/10.3390/sym11030365

**Chicago/Turabian Style**

Duan, Ran, and Shimeng Shen.
2019. "Bernoulli Polynomials and Their Some New Congruence Properties" *Symmetry* 11, no. 3: 365.
https://doi.org/10.3390/sym11030365