Approximate Solutions and Symmetry of a Two-Component Nonlocal Reaction-Diffusion Population Model of the Fisher–KPP Type
Abstract
:1. Introduction
2. Model Equations and Perturbation Theory
3. Semiclassical Approximation for the Cauchy Problem
3.1. Semiclassical Solution of the Non-Local Fisher–KPP Equation
3.2. The First-Order Correction to the Perturbation Solution of the Non-Local Fisher–KPP Equation
4. Symmetry Operators
5. Example
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murray, J.D. Mathematical Biology. I. An Introduction, 3rd ed.; Springer: New York, NY, USA, 2001; p. XXIII, 553. [Google Scholar]
- Fisher, R.A. The wave of advance of advantageous genes. Annu. Eugen. 1937, 7, 255–369. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Petrovskii, I.G.; Piskounov, N.S. A study of the diffusion equation with increase in the amount of substance and its application to a biology problem. Bull. Univ. Moscow Ser. Int. A 1937, 1, 1–16. [Google Scholar]
- Fuentes, M.A.; Kuperman, M.N.; Kenkre, V.M. Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 2003, 91, 158104. [Google Scholar] [CrossRef] [PubMed]
- d’Onofrio, A.; Gandolfi, A. Mathematical Oncology 2013. Modeling and Simulation in Science, Engineering and Technology; Springer: New York, NY, USA, 2014; p. 334. [Google Scholar]
- Levchenko, E.A.; Shapovalov, A.V.; Trifonov, A.Y. Pattern formation in terms of semiclassically limited distribution on lower dimensional manifolds for the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation. J. Phys. A Math. Theor. 2014, 47. [Google Scholar] [CrossRef]
- Levchenko, E.A.; Shapovalov, A.V.; Trifonov, A.Y. Asymptotics semiclassically concentrated on curves for the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation. J. Phys. A Math. Theor. 2016, 49. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Obukhov, V.V. Some aspects of nonlinearity and self-organization in biosystems on examples of localized excitations in the DNA molecule and generalized Fisher–KPP model. Symmetry 2018, 10, 53. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cole, J.D. Similarity Methods for Differential Equations; Series Title: Applied Mathematical Sciences, V. 13; Springer: New York, NY, USA, 1974; p. IX, 333. [Google Scholar]
- Ovsyannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, USA, 1982; p. 432. [Google Scholar]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; Mathematics and Its Applications; Soviet Series; D. Reidel Publishing: Dordrecht, The Netherlands, 1985; p. XV, 394. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Series Title: Graduate Texts in Mathematics, V. 107; Springer: New York, NY, USA, 1993; p. XXVIII, 513. [Google Scholar]
- Akhatov, I.S.; Gazizov, R.K.; Ibragimov, N.H. Nonlocal symmetries: a heuristic approach. J. Sov. Math. 1991, 55, 1401–1450. [Google Scholar] [CrossRef]
- Chetverikov, V.N.; Kudryavtsev, A.G. Modeling integro-differential equations and a method for computing their symmetries and conservation laws. Am. Math. Soc. Transl. 1995, 167, 1–22. [Google Scholar]
- Zawistowski, Z.J. Symmetries of integro-differential equations. Proc. Inst. Mat. NAS Ukraine 2002, 43, 263–270. [Google Scholar] [CrossRef]
- Meleshko, S.V. Methods for Constructing Exact Solutions of Partial Differential Equations: Mathematical and Analytical Techniques with Applications to Engineering; Springer: New York, NY, USA, 2005. [Google Scholar]
- Fushchych, W.; Shtelen, W. On nonlocal transformations. Lett. Nuovo Cim. 1985, 44, 40–42. [Google Scholar] [CrossRef]
- Levchenko, E.A.; Shapovalov, A.V.; Trifonov, A.Y. Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation. J. Math. Anal. Appl. 2012, 395, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Maslov, V.P. Operational Methods; MIR Pub.: Moscow, Russia, 1976; p. 559. [Google Scholar]
- Maslov, V.P. The Complex WKB Method for Nonlinear Equations. I. Linear Theory; Series: Progress in Mathematical Physics (Book 16); Birkhäuser: Basel, Switzerland, 1994; p. 304. [Google Scholar]
- Belov, V.V.; Dobrokhotov, S.Y. Semiclassical Maslov asymptotics with complex phases. I. General appoach. Teor. Mat. Fiz. 1992, 130, 215–254. [Google Scholar]
- Trifonov, A.Y.; Shapovalov, A.V. The one-dimensional Fisher–Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximetion. Russ. Phys. J. 2009, 52, 899–911. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Trifonov, A.Y. An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher–KPP equation. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850102. [Google Scholar] [CrossRef] [Green Version]
- Shapovalov, A.V.; Obukhov, V.V. Influence of the environment on pattern formation in the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii-Piskunov model. Russ. Phys. J. 2018, 6, 1093–1099. [Google Scholar] [CrossRef]
- Tarasov, S.A.; Zarubaev, V.V.; Gorbunov, E.A.; Sergeeva, S.A.; Epstein, O.I. Activity of ultra-low doses of antibodies to gamma-interferon against lethal influenza A (H1N1) 2009 virus infection in mice. Antivir. Res. 2012, 93, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, J.; Gorbunov, E.A.; Tarasov, S.A.; Epstein, O.I. Subetta treatment increases adiponectin secretion by mature human adipocytes in vitro. Int. J. Endocrinol. 2013, 2013, 925874. [Google Scholar] [CrossRef]
- Epstein, O. The spatial homeostasis hypothesis. Symmetry 2018, 10, 103. [Google Scholar] [CrossRef]
- Lisok, A.L.; Shapovalov, A.V.; Trifonov, A.Y. Symmetry and Intertwining Operators for the Nonlocal Gross–Pitaevskii Equation. Symmetry Integr. Geom. Methods Appl. 2013, 9, 1–21. [Google Scholar] [CrossRef]
- Levchenko, E.A.; Trifonov, A.Y.; Shapovalov, A.V. Symmetry operators of the nonlocal Fisher–Kolmogorov– Petrovskii–Piskunov equation with a quadratic operator. Russ. Phys. J. 2014, 56, 1415–1426. [Google Scholar] [CrossRef]
- Haas, F.; Eliasson, B. Time-dependent variational approach for Bose–Einstein condensates with nonlocal interaction. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 175302. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Simbawa, E. Mechanistic model for cancer growth and response to chemotherapy. Comput. Math. Methods Med. 2017, 2017. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Belov, V.V.; Trifonov, A.Y. Semiclassical trajectory-coherent approximation in quantum mechanics: I. High order corrections to multidimensional time-dependent equations of Schrödinger type. Ann. Phys. 1996, 246, 231–280. [Google Scholar] [CrossRef]
- Belov, V.V.; Trifonov, A.Y.; Shapovalov, A.V. The trajectory-coherent approximation and the system of moments for the Hartree type equation. Int. J. Math. Math. Sci. 2002, 32, 325–370. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, A.N.; Samarskii, A.A. Equations of Mathematical Physics; Pergamon Press: Oxford, UK, 1963; p. 765. [Google Scholar]
- Miller, W. Symmetry and Separation of Variables; Cambridge University Press: Cambridge, UK, 1984; p. 318. [Google Scholar]
- Patera, J.; Sharp, R.T.; Winternitz, P.; Zassenhaus, H. Invariants of real low dimension Lie algebras. J. Math. Phys. 1976, 6, 986–994. [Google Scholar] [CrossRef]
- Konyaev, A.Y. Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation. Sb. Math. 2014, 205, 45–62. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Langhorne, PA, USA, 1993; p. xxxvi, 976. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapovalov, A.V.; Trifonov, A.Y. Approximate Solutions and Symmetry of a Two-Component Nonlocal Reaction-Diffusion Population Model of the Fisher–KPP Type. Symmetry 2019, 11, 366. https://doi.org/10.3390/sym11030366
Shapovalov AV, Trifonov AY. Approximate Solutions and Symmetry of a Two-Component Nonlocal Reaction-Diffusion Population Model of the Fisher–KPP Type. Symmetry. 2019; 11(3):366. https://doi.org/10.3390/sym11030366
Chicago/Turabian StyleShapovalov, Alexander V., and Andrey Yu. Trifonov. 2019. "Approximate Solutions and Symmetry of a Two-Component Nonlocal Reaction-Diffusion Population Model of the Fisher–KPP Type" Symmetry 11, no. 3: 366. https://doi.org/10.3390/sym11030366