Individual-Level and Population-Level Lateralization: Two Sides of the Same Coin
Abstract
:1. Introduction
2. Advantages of Having an Asymmetrical Brain (at the Individual Level)
3. Population-Level Lateralization as an Evolutionarily Stable Strategy (ESS)
4. Individual- or Population-Level Lateralization as an ESS
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rogers, L.J.; Vallortigara, G.; Andrew, R. Divided Brains: The Biology and Behaviour of Brain Asymmetries, 1st ed.; Cambridge UP: Cambridge, UK, 2013. [Google Scholar]
- Versace, E.; Vallortigara, G. Forelimb preferences in human beings and other species: Multiple models for testing hypotheses on lateralization. Front. Psychol. 2015, 6, 233. [Google Scholar] [CrossRef]
- Rogers, L.J.; Vallortigara, G. When and Why Did Brains Break Symmetry? Symmetry 2015, 7, 2181–2194. [Google Scholar] [CrossRef] [Green Version]
- Vallortigara, G.; Versace, E. Laterality at the Neural, Cognitive, and Behavioral Levels. In APA Handbook of Comparative Psychology: Vol. 1. Basic Concepts, Methods, Neural Substrate, and Behavior; American Psychological Association: Washington, DC, USA, 2017; pp. 557–577. [Google Scholar]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Left-right asymmetries of behavioural and nervous system in invertebrates. Neurosci. Biobehav. Rev. 2012, 36, 1273–1291. [Google Scholar] [CrossRef]
- Frasnelli, E. Brain and behavioral lateralization in invertebrates. Front. Psychol. 2013, 4, 1–10. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J. Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 2005, 28, 575–588. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J.; Bisazza, A. Possible evolutionary origins of cognitive brain lateralization. Brain Res. Rev. 1999, 30, 164–175. [Google Scholar] [CrossRef]
- Vallortigara, G. Comparative neuropsychology of the dual brain: A stroll through left and right animals’ perceptual worlds. Brain Lang. 2000, 73, 189–219. [Google Scholar] [CrossRef]
- Andrew, R.J. (Ed.) Neural and Behavioural Plasticity: The Use of the Domestic Chicken as a Model; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Vallortigara, G.; Cozzutti, C.; Tommasi, L.; Rogers, L.J. How birds use their eyes: Opposite left-right specialisation for the lateral and frontal visual hemifield in the domestic chick. Curr. Biol. 2001, 11, 29–33. [Google Scholar] [CrossRef]
- Rogers, L.J.; Anson, J.M. Lateralisation of function in the chicken forebrain. Pharmacol. Biochem. Behav. 1979, 10, 679–686. [Google Scholar] [CrossRef]
- Valenti, A.; Sovrano, V.A.; Zucca, P.; Vallortigara, G. Visual lateralization in quails. Laterality 2003, 8, 67–78. [Google Scholar] [CrossRef]
- Rogers, L.J.; Zucca, P.; Vallortigara, G. Advantage of having a lateralized brain. Proc. R. Soc. Lond. B 2004, 271, S420–S422. [Google Scholar] [CrossRef]
- McGrew, W.C.; Marchant, L.F. Laterality of hand use pays off in foraging success for wild chimpanzees. Primates 1999, 40, 509–513. [Google Scholar] [CrossRef]
- Marcinowski, E.C.; Campbell, J.M.; Faldowski, R.A.; Michel, G.F. Do hand preferences predict stacking skill during infancy? Dev. Psychobiol. 2016, 58, 958–967. [Google Scholar] [CrossRef]
- Magat, M.; Brown, C. Laterality enhances cognition in Australian parrots. Proc. R. Soc. Lond. B 2009, 276, 4155–4162. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J. Evolution of hemispheric specialisation: Advantages and disadvantages. Brain Lang. 2000, 73, 236–253. [Google Scholar] [CrossRef]
- Güntürkün, O.; Diekamp, B.; Manns, M. Asymmetry pays: Visual lateralization improves discrimination success in pigeons. Curr. Biol. 2000, 10, 1079–1081. [Google Scholar] [CrossRef]
- Bell, A.T.; Niven, J.E. Individual-level, context-dependent handedness in the desert locust. Curr. Biol. 2014, 24, R382–R383. [Google Scholar] [CrossRef]
- Bell, A.T.; Niven, J.E. Strength of forelimb lateralization predicts motor errors in an insect. Biol. Lett. 2016, 12, 20160547. [Google Scholar] [CrossRef] [Green Version]
- Miler, K.; Kuszewska, K.; Woyciechowski, M. Larval antlions with more pronounced behavioural asymmetry show enhanced cognitive skills. Biol. Lett. 2017, 13, 20160786. [Google Scholar] [CrossRef] [Green Version]
- Hook, M.A.; Rogers, L.J. Visuospatial reaching preferences of common marmosets (Callithrix jacchus): An assessment of individual biases across a variety of tasks. J. Comp. Psychol. 2008, 122, 41–51. [Google Scholar] [CrossRef]
- Brown, C.; Braithwaite, V.A. Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behav. Ecol. 2005, 16, 482–487. [Google Scholar] [CrossRef]
- Krakauer, A.H.; Blundell, M.A.; Scanlan, T.N.; Wechsler, M.S.; McCloskey, E.A.; Yu, J.H.; Patricelli, G.L. Successfully mating male sage-grouse show greater laterality in courtship and aggressive interactions. Anim. Behav. 2016, 111, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Jennings, D.J. Right-sided bias in fallow deer terminating parallel walks: Evidence for lateralization during a lateral display. Anim. Behav. 2012, 83, 1427–1432. [Google Scholar] [CrossRef]
- Camerlink, I.; Menneson, S.; Turner, S.P.; Farish, M.; Arnott, G. Lateralization influences contest behaviour in domestic pigs. Sci. Rep. 2018, 8, 12116. [Google Scholar] [CrossRef]
- Found, R.; Clair, C.C. Ambidextrous ungulates have more flexible behaviour, bolder personalities and migrate less. R. Soc. Opensci. 2017, 4, 160958. [Google Scholar] [CrossRef] [Green Version]
- Dharmaretnam, M.; Rogers, L.J. Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav. Brain Res. 2005, 162, 62–70. [Google Scholar] [CrossRef]
- Reddon, A.R.; Hurd, P.L. Individual differences in cerebral lateralization are associated with shy-bold variation in the convict cichlid. Anim. Behav. 2009, 77, 189–193. [Google Scholar] [CrossRef]
- Byrnes, E.E.; Pouca, C.V.; Brown, C. Laterality strength is linked to stress reactivity in Port Jackson sharks (Heterodontus portusjacksoni). Behav. Brain Res. 2016, 305, 239–246. [Google Scholar] [CrossRef]
- Whiteside, M.A.; Bess, M.M.; Frasnelli, E.; Beardsworth, C.E.; Langley, E.J.G.; van Horik, J.O.; Madden, J.R. Low survival of strongly footed pheasants may explain constraints on lateralization. Sci. Rep. 2018, 8, 13791. [Google Scholar] [CrossRef]
- Hirnstein, M.; Leask, S.; Rose, J.; Hausmann, M. Disentangling the relationship between hemispheric asymmetry and cognitive performance. Brain Cogn. 2010, 73, 119–127. [Google Scholar] [CrossRef]
- Boles, D.B.; Barth, J.M.; Merrill, E.C. Asymmetry and performance: Toward a neurodevelopmental theory. Brain Cogn. 2008, 66, 124–139. [Google Scholar] [CrossRef]
- McManus, I.C. Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies, Atoms, and Cultures; Weidenfeld & Nicolson: London, UK, 2002. [Google Scholar]
- Rogers, L.J.; Workman, L. Light exposure during incubation affects competitive behaviour in domestic chicks. Appl. Anim. Behav. Sci. 1989, 23, 187–198. [Google Scholar] [CrossRef]
- Ghirlanda, S.; Vallortigara, G. The evolution of brain lateralisation: A game-theoretical analysis of population structure. Proc. R. Soc. B 2004, 271, 853–857. [Google Scholar] [CrossRef]
- Vallortigara, G. The evolutionary psychology of left and right: Costs and benefits of lateralization. Dev. Psychobiol. 2006, 48, 418–427. [Google Scholar] [CrossRef]
- Lippolis, G.; Bisazza, A.; Rogers, L.J.; Vallortigara, G. Lateralization of predator avoidance responses in three species of toads. Laterality 2002, 7, 163–183. [Google Scholar] [CrossRef]
- Foster, W.A.; Treherne, J.E. Evidence for the dilution effect in the selfish herd from fish predation of a marine insect. Nature 1981, 293, 508–510. [Google Scholar] [CrossRef]
- Chivers, D.P.; McCormick, M.I.; Allan, B.J.; Mitchell, M.D.; Goncalves, E.J.; Bryshun, R.; Ferrari, M.C. At odds with the group: Changes in lateralization and escape performance reveal conformity and conflict in fish schools. Proc. R. Soc. Lond. B 2016, 283, 20161127. [Google Scholar] [CrossRef]
- Ghirlanda, S.; Frasnelli, E.; Vallortigara, G. Intraspecific competition and coordination in the evolution of lateralization. Phil. Trans. R. Soc. Lond. B 2009, 364, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Loffing, F. Left- handedness and time pressure in elite interactive ball games. Biol. Lett. 2017, 13, 20170446. [Google Scholar] [CrossRef]
- Faurie, C.; Raymond, M. Handedness, homicide and negative frequency-dependent selection. Proc. R. Soc. Lond. B 2005, 272, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Frasnelli, E.; Haase, A.; Rigosi, E.; Anfora, G.; Rogers, L.J.; Vallortigara, G. The bee as a model to investigate brain and behavioural asymmetries. Insects 2014, 5, 120–138. [Google Scholar] [CrossRef]
- Niven, J.E.; Frasnelli, E. Insights into the evolution of lateralization from the insects. Progr. Brain Res. 2018, 238, 3–31. [Google Scholar]
- Anfora, G.; Frasnelli, E.; Maccagnani, B.; Rogers, L.J.; Vallortigara, G. Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav. Brain Res. 2010, 206, 236–239. [Google Scholar] [CrossRef]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Right-left antennal asymmetry of odour memory recall in three species of Australian stingless bees. Behav. Brain Res. 2011, 224, 121–127. [Google Scholar] [CrossRef]
- Anfora, G.; Rigosi, E.; Frasnelli, E.; Trona, F.; Vallortigara, G. Lateralization in the invertebrate brain: Left–right asymmetry of olfaction in bumble bee, Bombus terrestris. PLoS ONE 2011, 6, e18903. [Google Scholar] [CrossRef]
- Frasnelli, E.; Iakovlev, I.; Reznikova, Z. Asymmetry in antennal contacts during trophallaxis in ants. Behav. Brain Res. 2012, 232, 7–12. [Google Scholar] [CrossRef]
- Rogers, L.J.; Rigosi, E.; Frasnelli, E.; Vallortigara, G. A right antenna for social behaviour in honeybees. Sci. Rep. 2013, 3, 2045. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J.; Frasnelli, E. Antennal Asymmetry in Social Behavior of the Australian Stingless Bee, Tetragonula carbonaria. J. Insect Behav. 2016, 29, 491–499. [Google Scholar] [CrossRef]
- Karenina, K.; Giljov, A.; Ingram, J.; Rowntree, V.J.; Malashichev, Y. Lateralization of mother–infant interactions in a diverse range of mammal species. Nat. Ecol. Evol. 2017, 1, 0030. [Google Scholar] [CrossRef]
- Rogers, L.J.; Frasnelli, E.; Versace, E. Lateralized antennal control of aggression and sex differences in red mason bees, Osmia bicornis. Sci. Rep. 2016, 6, 29411. [Google Scholar] [CrossRef]
- Letzkus, P.; Boeddeker, N.; Wood, J.T.; Zhang, S.W.; Srinivasan, M.V. Lateralization of visual learning in the honeybee. Biol. Lett. 2008, 4, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Letzkus, P.; Ribi, W.A.; Wood, J.T.; Zhu, H.; Zhang, S.W.; Srinivasan, M.V. Lateralization of olfaction in the honeybee Apis mellifera. Curr. Biol. 2006, 16, 1471–1476. [Google Scholar] [CrossRef]
- Rogers, L.J.; Vallortigara, G. From antenna to antenna: Lateral shift of olfactory memory recall by honeybees. PLoS ONE 2008, 3, e2340. [Google Scholar] [CrossRef]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Response competition associated with right-left antennal asymmetries of new and old olfactory memory traces in honeybees. Behav. Brain Res. 2010, 209, 36–41. [Google Scholar] [CrossRef]
- Ong, M.; Bulmer, M.; Groening, J.; Srinivasan, M.V. Obstacle traversal and route choice in flying honeybees: Evidence for individual handedness. PLoS ONE 2017, 12, e0184343. [Google Scholar] [CrossRef]
- Hönicke, C.; Bliss, P.; Moritz, R.F. Effect of density on traffic and velocity on trunk trails of Formica pratensis. Sci. Nat. 2015, 102, 17. [Google Scholar] [CrossRef]
- Calcraft, P.R.T.; Bell, A.T.; Husbands, P.; Philippides, A.; Niven, J.E. The evolution of handedness: Why are ant colonies left-and right-handed? Biomath Commun. 2016, 3. [Google Scholar] [CrossRef]
- Benelli, G.; Donati, E.; Romano, D.; Stefanini, C.; Messing, R.H.; Canale, A. Lateralisation of aggressive displays in a tephritid fly. Sci. Nat. 2015, 102, 1. [Google Scholar] [CrossRef]
- Downes, J.C.; Birsoy, B.; Chipman, K.C.; Rothman, J.H. Handedness of a motor program in C. elegans is independent of left-right body asymmetry. PLoS ONE 2012, 7, e52138. [Google Scholar] [CrossRef]
- Kurvers, R.H.; Krause, S.; Viblanc, P.E.; Herbert-Read, J.E.; Zaslansky, P.; Domenici, P.; Couillaud, P. The evolution of lateralization in group hunting sailfish. Curr. Biol. 2017, 27, 521–526. [Google Scholar] [CrossRef]
- Frasnelli, E. Lateralization in Invertebrates. In Lateralized Brain Functions: Methods in Human and Non-Human Species; Neuromethods; Springer Protocols; Rogers, L.J., Vallortigara, G., Eds.; Humana Press: New York, NY, USA, 2017; Volume 122, pp. 153–208. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frasnelli, E.; Vallortigara, G. Individual-Level and Population-Level Lateralization: Two Sides of the Same Coin. Symmetry 2018, 10, 739. https://doi.org/10.3390/sym10120739
Frasnelli E, Vallortigara G. Individual-Level and Population-Level Lateralization: Two Sides of the Same Coin. Symmetry. 2018; 10(12):739. https://doi.org/10.3390/sym10120739
Chicago/Turabian StyleFrasnelli, Elisa, and Giorgio Vallortigara. 2018. "Individual-Level and Population-Level Lateralization: Two Sides of the Same Coin" Symmetry 10, no. 12: 739. https://doi.org/10.3390/sym10120739