Increased Levels of Anti-Anisakis Antibodies During Hospital Admission in Septic Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Type and Population
2.2. Methods of Blood Sample Analysis
2.2.1. Evaluation of γδ and αβ T Cells and Apoptosis
2.2.2. Extraction of Anisakis Antigen and Specific Antibody Detection
2.3. Statistical Analysis
3. Results
3.1. Specific Antibodies Against Anisakis
3.2. Immunoglobulins Anti-Anisakis and Numbers of αβ and γδ T Cell Subsets and Mortality
3.3. Apoptosis of αβ and γδ T Cell Subsets and Mortality
3.4. Differences in Anti-Anisakis Immunoglobulins According to Deficit of αβ and γδ T Cell Subsets in Surviving Septic Patients
3.5. Correlations Between αβ-γδ T Cell Numbers with Anisakis Antibody Levels
3.6. Correlations Between Apoptosis of αβ-γδ T Cells with Anti-Anisakis Antibody Levels
4. Discussion
- -
- Anti-Anisakis antibody evolution in septic patients:
- -
- Relationship between T cell subtypes and anti-Anisakis antibodies:
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiu, C.; Legrand, M. Epidemiology of sepsis and septic shock. Curr. Opin. Anaesthesiol. 2021, 34, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Swanson, P.E.; Freeman, B.D.; Tinsley, K.W.; Cobb, J.P.; Matuschak, G.M.; Buchman, T.G.; Karl, I.E. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 1999, 27, 1230–1251. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Schmieg, R.E.; Hui, J.J.; Chang, K.C.; Osborne, D.F.; Freeman, B.D.; Cobb, J.P.; Buchman, T.G.; et al. Sepsis-Induced Apoptosis Causes Progressive Profound Depletion of B and CD4+ T Lymphocytes in Humans. J. Immunol. 2001, 166, 6952–6963. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Ballester, J.C.; Arribas, M.A.; Rico, M.; Garcia-Ballesteros, C.; Galindo-Regal, L.; Sorando-Serra, R.; Albert, L.; Navarro, A.; Lopez-Chulia, F.; Peydro, F.; et al. Changes of CD3+CD56+ gammadelta T cell number and apoptosis during hospital admission are related to mortality in septic patients. Clin. Immunol. 2022, 236, 108956. [Google Scholar] [CrossRef]
- Andreu-Ballester, J.C.; Tormo-Calandin, C.; Garcia-Ballesteros, C.; Perez-Griera, J.; Amigo, V.; Almela-Quilis, A.; Ruiz del Castillo, J.; Penarroja-Otero, C.; Ballester, F. Association of gammadelta T cells with disease severity and mortality in septic patients. Clin. Vaccine Immunol. 2013, 20, 738–746. [Google Scholar] [CrossRef]
- Otto, G.P.; Sossdorf, M.; Claus, R.A.; Rodel, J.; Menge, K.; Reinhart, K.; Bauer, M.; Riedemann, N.C. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit. Care 2011, 15, R183. [Google Scholar] [CrossRef]
- AndreuBallester, J.C. Increase of IgE Anti-Encephalitozoon cuniculi Antibody Levels in Septic Patients. J. Clin. Cell. Immunol. 2014, 5, 244. [Google Scholar] [CrossRef]
- Walton, A.H.; Muenzer, J.T.; Rasche, D.; Boomer, J.S.; Sato, B.; Brownstein, B.H.; Pachot, A.; Brooks, T.L.; Deych, E.; Shannon, W.D.; et al. Reactivation of multiple viruses in patients with sepsis. PLoS ONE 2014, 9, e98819. [Google Scholar] [CrossRef]
- Imlay, H.; Limaye, A.P. Current Understanding of Cytomegalovirus Reactivation in Critical Illness. J. Infect. Dis. 2020, 221, S94–S102. [Google Scholar] [CrossRef] [PubMed]
- Marandu, T.; Dombek, M.; Cook, C.H. Impact of cytomegalovirus load on host response to sepsis. Med. Microbiol. Immunol. 2019, 208, 295–303. [Google Scholar] [CrossRef]
- Adroher-Auroux, F.J.; Benitez-Rodriguez, R. Anisakiasis and Anisakis: An underdiagnosed emerging disease and its main etiological agents. Res. Vet. Sci. 2020, 132, 535–545. [Google Scholar] [CrossRef]
- Audicana, M.T.; Kennedy, M.W. Anisakis simplex: From obscure infectious worm to inducer of immune hypersensitivity. Clin. Microbiol. Rev. 2008, 21, 360–379. [Google Scholar] [CrossRef]
- Daschner, A.; Cuellar, C.; Rodero, M. The Anisakis allergy debate: Does an evolutionary approach help? Trends Parasitol. 2012, 28, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuizen, N.E. Anisakis—Immunology of a foodborne parasitosis. Parasite Immunol. 2016, 38, 548–557. [Google Scholar] [CrossRef]
- Daschner, A.; Cuellar, C.; Sanchez-Pastor, S.; Pascual, C.Y.; Martin-Esteban, M. Gastro-allergic anisakiasis as a consequence of simultaneous primary and secondary immune response. Parasite Immunol. 2002, 24, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Bellini, I.; Scribano, D.; Sarshar, M.; Ambrosi, C.; Pizzarelli, A.; Palamara, A.T.; D’Amelio, S.; Cavallero, S. Inflammatory Response in Caco-2 Cells Stimulated with Anisakis Messengers of Pathogenicity. Pathogens 2022, 11, 1214. [Google Scholar] [CrossRef]
- Andreu-Ballester, J.C.; Zamora, V.; Garcia-Ballesteros, C.; Benet-Campos, C.; Lopez-Chulia, F.; Tormo-Calandin, C.; Cuellar, C. Anti-Anisakis sp. antibodies in serum of patients with sepsis and their relationship with gammadelta T cells and disease severity. Int. J. Parasitol. 2018, 48, 483–491. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Garcia-Palacios, L.; Gonzalez, M.L.; Esteban, M.I.; Mirabent, E.; Perteguer, M.J.; Cuellar, C. Enzyme-linked immunosorbent assay, immunoblot analysis and RAST fluoroimmunoassay analysis of serum responses against crude larval antigens of Anisakis simplex in a Spanish random population. J. Helminthol. 1996, 70, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, R.; Cuellar, C. Immunoglobulins anti-Anisakis simplex in patients with gastrointestinal diseases. J. Helminthol. 2002, 76, 131–136. [Google Scholar] [CrossRef] [PubMed]
- de Lima, C.M.F.; Magalhaes, A.S.; Costa, R.; Barreto, C.C.; Machado, P.R.L.; Carvalho, E.M.; Lessa, M.M.; Carvalho, L.P. High Anti-Leishmania IgG Antibody Levels Are Associated With Severity of Mucosal Leishmaniasis. Front. Cell. Infect. Microbiol. 2021, 11, 652956. [Google Scholar] [CrossRef]
- Dowling, J.J.; Whitty, C.J.; Chaponda, M.; Munthali, C.; Zijlstra, E.E.; Gilks, C.F.; Squire, S.B.; Gordon, M.A. Are intestinal helminths a risk factor for non-typhoidal Salmonella bacteraemia in adults in Africa who are seropositive for HIV? A case-control study. Ann. Trop. Med. Parasitol. 2002, 96, 203–208. [Google Scholar] [CrossRef]
- Farid, A.S.; Jimi, F.; Inagaki-Ohara, K.; Horii, Y. Increased intestinal endotoxin absorption during enteric nematode but not protozoal infections through a mast cell-mediated mechanism. Shock 2008, 29, 709–716. [Google Scholar] [CrossRef]
- Hübner, M.P.; Layland, L.E.; Hoerauf, A. Helminths and their implication in sepsis—A new branch of their immunomodulatory behaviour? Pathog. Dis. 2013, 69, 127–141. [Google Scholar] [CrossRef] [PubMed]
- George, P.J.; Anuradha, R.; Kumar, N.P.; Kumaraswami, V.; Nutman, T.B.; Babu, S. Evidence of microbial translocation associated with perturbations in T cell and antigen-presenting cell homeostasis in hookworm infections. PLoS Negl. Trop. Dis. 2012, 6, e1830. [Google Scholar] [CrossRef]
- George, P.J.; Anuradha, R.; Kumar, N.P.; Sridhar, R.; Banurekha, V.V.; Nutman, T.B.; Babu, S. Helminth infections coincident with active pulmonary tuberculosis inhibit mono- and multifunctional CD4+ and CD8+ T cell responses in a process dependent on IL-10. PLoS Pathog. 2014, 10, e1004375. [Google Scholar] [CrossRef]
- Gardini, G.; Froeschl, G.; Gurrieri, F.; De Francesco, M.A.; Cattaneo, C.; Marchese, V.; Piccinelli, G.; Corbellini, S.; Pagani, C.; Santagiuliana, M.; et al. Strongyloides stercoralis infection: An underlying cause of invasive bacterial infections of enteric origin. Results from a prospective cross-sectional study of a northern Italian tertiary hospital. Infection 2023, 51, 1541–1548. [Google Scholar] [CrossRef]
- Zamora, V.; Garcia-Ballesteros, C.; Benet-Campos, C.; Ballester, F.; Cuellar, C.; Andreu-Ballester, J.C. Anti-Anisakis sp. antibodies in serum of healthy subjects. Relationship with alphabeta and gammadelta T cells. Acta Parasitol. 2017, 62, 97–103. [Google Scholar] [CrossRef]
- Napoletano, C.; Mattiucci, S.; Colantoni, A.; Battisti, F.; Zizzari, I.G.; Rahimi, H.; Nuti, M.; Rughetti, A. Anisakis pegreffii impacts differentiation and function of human dendritic cells. Parasite Immunol. 2018, 40, e12527. [Google Scholar] [CrossRef] [PubMed]
No. (%) of Patients | No. (%) of Patients | ||
---|---|---|---|
| |||
| Acute Heart Failure | 32 (80.0) | |
Sepsis | 11 (27.5) | Cardiovascular | 29 (72.5) |
Septic Shock | 29 (72.5) | Acute Renal Failure | 26 (65.0) |
| Acute Respiratory Failure | 19 (47.5) | |
Urinary Tract Infections | 15 (37.5) | Metabolic | 18 (45.0) |
Pneumonia | 7 (17.5) | Acute Hepatic Failure | 13 (32.5) |
Peritonitis | 6 (15.0) | Hematologic | 10 (25.0) |
Primary bacteremia | 3 (7.5) | Neurologic | 9 (22.5) |
Acute Cholangitis | 1 (2.5) |
| Mean ± S.D. |
Acute Cholecystitis | 2 (5.0) | APACHE II Score | 19.6 ± 7.6 |
Meningitis | 2 (5.0) | SOFA Score | 6.8 ± 3.4 |
Cellulitis | 1 (2.5) | C-Reactive Protein (mg/l) | 198.6 ± 137.2 |
Acute pancreatitis | 1 (2.5) | Procalcitonin (ng/mL) | 44.8 ± 69.6 |
Endocarditis | 1 (2.5) | Lactic Acid (mg/dl) | 3.1 ± 2.7 |
Gastroenterocolitis | 1 (2.5) |
| 5 (12.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreu-Ballester, J.C.; Navarro, A.; Arribas, M.A.; Rico, M.; Albert, L.; García-Ballesteros, C.; Galindo-Regal, L.; Sorando-Serra, R.; López-Chuliá, F.; Peydro, F.; et al. Increased Levels of Anti-Anisakis Antibodies During Hospital Admission in Septic Patients. Antibodies 2024, 13, 96. https://doi.org/10.3390/antib13040096
Andreu-Ballester JC, Navarro A, Arribas MA, Rico M, Albert L, García-Ballesteros C, Galindo-Regal L, Sorando-Serra R, López-Chuliá F, Peydro F, et al. Increased Levels of Anti-Anisakis Antibodies During Hospital Admission in Septic Patients. Antibodies. 2024; 13(4):96. https://doi.org/10.3390/antib13040096
Chicago/Turabian StyleAndreu-Ballester, Juan Carlos, Amparo Navarro, Miguel Angel Arribas, Moises Rico, Laura Albert, Carlos García-Ballesteros, Lorena Galindo-Regal, Rosa Sorando-Serra, Francisca López-Chuliá, Federico Peydro, and et al. 2024. "Increased Levels of Anti-Anisakis Antibodies During Hospital Admission in Septic Patients" Antibodies 13, no. 4: 96. https://doi.org/10.3390/antib13040096
APA StyleAndreu-Ballester, J. C., Navarro, A., Arribas, M. A., Rico, M., Albert, L., García-Ballesteros, C., Galindo-Regal, L., Sorando-Serra, R., López-Chuliá, F., Peydro, F., Rodero, M., González-Fernández, J., & Cuéllar, C. (2024). Increased Levels of Anti-Anisakis Antibodies During Hospital Admission in Septic Patients. Antibodies, 13(4), 96. https://doi.org/10.3390/antib13040096