Screening for TORCH Antibodies in Croatian Childbearing-Aged Women, 2014–2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. TORCH Seroprevalence
3.3. Simultaneous TORCH Seroprevalence
3.4. Risk Analysis for TORCH Seropositivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stegmann, B.J.; Carey, J.C. TORCH Infections. Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes infections. Curr. Women’s Health Rep. 2002, 2, 253–258. [Google Scholar]
- Vilibic-Cavlek, T.; Belamaric, M.; Ferenc, T.; Navolan, D.; Kolaric, B.; Milasincic, L.; Antolasic, L.; Vujica Ferenc, M.; Vilibic, M.; Lukunic, A.; et al. Seroepidemiology of Herpes Simplex Viruses Type 1 and 2 in Pregnant Women in Croatia. Medicina 2024, 60, 284. [Google Scholar] [CrossRef] [PubMed]
- Layton, J.; Theiopoulou, D.-C.; Rutenberg, D.; Elshereye, A.; Zhang, Y.; Sinnott, J.; Kim, K.; Montoya, J.G.; Contopoulos-Ioannidis, D.G. Clinical Spectrum, Radiological Findings, and Outcomes of Severe Toxoplasmosis in Immunocompetent Hosts: A Systematic Review. Pathogens 2023, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Damar Çakırca, T.; Can, İ.N.; Deniz, M.; Torun, A.; Akçabay, Ç.; Güzelçiçek, A. Toxoplasmosis: A Timeless Challenge for Pregnancy. Trop. Med. Infect. Dis. 2023, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Deganich, M.; Boudreaux, C.; Benmerzouga, I. Toxoplasmosis Infection during Pregnancy. Trop. Med. Infect. Dis. 2022, 8, 3. [Google Scholar] [CrossRef]
- Khan, K.; Khan, W. Congenital toxoplasmosis: An overview of the neurological and ocular manifestations. Parasitol. Int. 2018, 67, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Maraqa, N.F. Congenital Rubella. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lanzeri, T.; Redd, S.; Abernathy, E.; Icenogle, J. Congenital Rubella Syndrome. In Manual for the Surveillance of Vaccine-Preventable Diseases. Available online: https://www.cdc.gov/vaccines/pubs/surv-manual/chpt15-crs.html (accessed on 15 March 2024).
- Ssentongo, P.; Hehnly, C.; Birungi, P.; Roach, M.A.; Spady, J.; Fronterre, C.; Wang, M.; Murray-Kolb, L.E.; Al-Shaar, L.; Chinchilli, V.M.; et al. Congenital Cytomegalovirus Infection Burden and Epidemiologic Risk Factors in Countries With Universal Screening: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e2120736. [Google Scholar] [CrossRef]
- Korndewal, M.J.; Oudesluys-Murphy, A.M.; Kroes, A.C.M.; van der Sande, M.A.B.; de Melker, H.E.; Vossen, A.C.T.M. Longterm impairment attributable to congenital cytomegalovirus infection: A retrospective cohort study. Dev. Med. Child Neurol. 2017, 59, 1261–1268. [Google Scholar] [CrossRef]
- Akpan, U.S.; Pillarisetty, L.S. Congenital Cytomegalovirus Infection. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Straface, G.; Selmin, A.; Zanardo, V.; De Santis, M.; Ercoli, A.; Scambia, G. Herpes simplex virus infection in pregnancy. Infect. Dis. Obstet. Gynecol. 2012, 2012, 385697. [Google Scholar] [CrossRef]
- De Rose, D.U.; Bompard, S.; Maddaloni, C.; Bersani, I.; Martini, L.; Santisi, A.; Longo, D.; Ronchetti, M.P.; Dotta, A.; Auriti, C. Neonatal herpes simplex virus infection: From the maternal infection to the child outcome. J. Med. Virol. 2023, 95, e29024. [Google Scholar] [CrossRef]
- Punda-Polić, V.; Tonkić., M.; Capkun, V. Prevalence of antibodies to Toxoplasma gondii in the female population of the County of Split Dalmatia, Croatia. Eur. J. Epidemiol. 2000, 16, 875–877. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Ljubin-Sternak, S.; Ban, M.; Kolaric, B.; Sviben, M.; Mlinaric-Galinovic, G. Seroprevalence of TORCH infections in women of childbearing age in Croatia. J. Matern. Fetal Neonatal Med. 2011, 24, 280–283. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Kolaric, B.; Ljubin-Sternak, S.; Mlinaric-Galinovic, G. Herpes simplex virus infection in the Croatian population. Scand. J. Infect. Dis. 2011, 43, 918–922. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Kolaric, B.; Beader, N.; Vrtar, I.; Tabain, I.; Mlinaric-Galinovic, G. Seroepidemiology of cytomegalovirus infections in Croatia. Wien. Klin. Wochenschr. 2017, 129, 129–135. [Google Scholar] [CrossRef]
- Palazzotto, E.; Bonura, F.; Calà, C.; Capra, G.; Pistoia, D.; Mangione, D.; Mascarella, C.; Minì, G.; Enea, M.; Giammanco, G.M.; et al. Serological status for TORCH in women of childbearing age: A decade-long surveillance (2012–2022) in Italy. J. Med. Microbiol. 2023, 72, 7. [Google Scholar] [CrossRef]
- Bartolomé Alvarez, J.; Martínez Serrano, M.; Moreno Parrado, L.; Lorente Ortuño, S.; Crespo Sánchez, M.D. Prevalencia e incidencia de la infección por Toxoplasma gondii en mujeres en edad fértil en Albacete (2001–2007) [Prevalence and incidence in Albacete, Spain, of Toxoplasma gondii infection in women of childbearing age: Differences between immigrant and non-immigrant (2001–2007)]. Rev. Esp. Salud. Publica 2008, 82, 333–342. (In Spanish) [Google Scholar] [CrossRef]
- Warnecke, J.; Pollmann, M.; Borchardt-Lohölter, V.; Moreira-Soto, A.; Kaya, S.; Sener, A.G.; Gómez-Guzmán, E.; Figueroa-Hernández, L.; Li, W.; Li, F. Seroprevalences of antibodies against ToRCH infectious pathogens in women of childbearing age residing in Brazil, Mexico, Germany, Poland, Turkey and China. Epidemiol. Infect. 2020, 148, E271. [Google Scholar] [CrossRef]
- Pribakovic, J.A.; Katanic, N.; Radevic, T.; Tasic, M.S.; Kostic, M.; Stolic, B.; Radulovic, A.; Minic, V.; Bojovic, K.; Katanic, R. Serological status of childbearing-aged women for Toxoplasma gondii and cytomegalovirus in northern Kosovo and Metohija. Rev. Soc. Bras. Med. Trop. 2019, 52, e20170313. [Google Scholar] [CrossRef]
- Marković-Denić, L.; Stopić, M.; Bobić, B.; Nikolić, V.; Djilas, I.; Srzentić, S.J.; Štajner, T. Factors Associated with Toxoplasma gondii Seroprevalence in Pregnant Women: A Cross-Sectional Study in Belgrade, Serbia. Pathogens 2023, 12, 1240. [Google Scholar] [CrossRef]
- Nash, J.Q.; Chissel, S.; Jones, J.; Warburton, F.; Verlander, N.Q. Risk factors for toxoplasmosis in pregnant women in Kent, United Kingdom. Epidemiol. Infect. 2005, 133, 475–483. [Google Scholar] [CrossRef]
- Flatt, A.; Shetty, N. Seroprevalence and risk factors for toxoplasmosis among antenatal women in London: A re-examination of risk in an ethnically diverse population. Eur. J. Public Health 2013, 23, 648–652. [Google Scholar] [CrossRef]
- Eroglu, S.; Asgin, N. Awareness, knowledge and risk factors of Toxoplasma gondii infection among pregnant women in the Western Black Sea region of Turkey. J. Obstet. Gynaecol. 2021, 41, 714–720. [Google Scholar] [CrossRef]
- Robinson, E.; de Valk, H.; Villena, I.; Le Strat, Y.; Tourdjman, M. National perinatal survey demonstrates a decreasing seroprevalence of Toxoplasma gondii infection among pregnant women in France, 1995 to 2016: Impact for screening policy. Euro Surveill. 2021, 26, 1900710. [Google Scholar] [CrossRef]
- Kortbeek, L.M.; De Melker, H.E.; Veldhuijzen, I.K.; Conyn-Van Spaendonck, M.A. Population-based Toxoplasma seroprevalence study in The Netherlands. Epidemiol. Infect. 2004, 132, 839–845. [Google Scholar] [CrossRef]
- Neagoe, I.M.; Cretu, C.M.; Lazar, L.E. Serological and Molecular Diagnosis of Toxoplasma gondii Infection in Pregnant Women in Romania. Rom. Arch. Microbiol. Immunol. 2018, 77, 58–66. [Google Scholar]
- Costache, C.A.; Ţigan, Ş.I.; Colosi, I.; Coroiu, Z. Toxoplasmic Infection in Pregnant Women from Cluj County and Neighbouring Area. Appl. Med. Inform. 2008, 23, 31–36. [Google Scholar]
- Mocanu, A.G.; Stoian, D.L.; Craciunescu, E.L.; Ciohat, I.M.; Motofelea, A.C.; Navolan, D.B.; Vilibic-Cavlek, T.; Stevanovic, V.; Nemescu, D.; Forga, M.; et al. The Impact of Latent Toxoplasma gondii Infection on Spontaneous Abortion History and Pregnancy Outcomes: A Large-Scale Study. Microorganisms 2022, 10, 1944. [Google Scholar] [CrossRef]
- Mihu, A.G.; Balta, C.; Marti, D.T.; Paduraru, A.A.; Lupu, M.A.; Olariu, T.R. Seroprevalence of Toxoplasma gondii infection among women of childbearing age in an endemic region of Romania, 2016–2018. Parasite 2020, 27, 59. [Google Scholar] [CrossRef]
- Motoi, S.; Navolan, D.B.; Malita, D.; Ciohat, I.; Nemescu, D.; Manciuc, C.; Gorun, F.; Vilibic-Cavlek, T.; Boda, D.; Craina, M.; et al. A decreasing trend in Toxoplasma gondii seroprevalence among pregnant women in Romania—Results of a large scale study. Exp. Ther. Med. 2020, 20, 3536–3540. [Google Scholar] [CrossRef]
- Csep, A.; Vaida, L.L.; Negruțiu, B.M.; Todor, B.I.; Judea-Pusta, C.T.; Buhaș, C.; Sava, C. Research on demographic, clinical and paraclinical aspects in pregnant women infected with Toxoplasma gondii. Exp. Ther. Med. 2022, 23, 123. [Google Scholar] [CrossRef]
- Olariu, T.R.; Ursoniu, S.; Hotea, I.; Dumitrascu, V.; Anastasiu, D.; Lupu, M.A. Seroprevalence and Risk Factors of Toxoplasma gondii Infection in Pregnant Women from Western Romania. Vector Borne Zoonotic Dis. 2020, 20, 763–767. [Google Scholar] [CrossRef]
- Fanigliulo, D.; Marchi, S.; Montomoli, E.; Trombetta, C.M. Toxoplasma gondii in women of childbearing age and during pregnancy: Seroprevalence study in Central and Southern Italy from 2013 to 2017. Parasite 2020, 27, 2. [Google Scholar] [CrossRef]
- Guo, M.; Dubey, J.P.; Hill, D.; Buchanan, R.L.; Gamble, H.R.; Jones, J.L.; Pradhan, A.K. Prevalence and risk factors for Toxoplasma gondii infection in meat animals and meat products destined for human consumption. J. Food Prot. 2015, 78, 457–476. [Google Scholar] [CrossRef]
- Petersson, K.; Stray-Pedersen, B.; Malm, G.; Forsgren, M.; Evengård, B. Seroprevalence of Toxoplasma gondii among pregnant women in Sweden. Acta Obstet. Gynecol. Scand. 2000, 79, 824–829. [Google Scholar] [CrossRef]
- Nowakowska, D.; Stray-Pedersen, B.; Spiewak, E.; Sobala, W.; Małafiej, E.; Wilczyński, J. Prevalence and estimated incidence of Toxoplasma infection among pregnant women in Poland: A decreasing trend in the younger population. Clin. Microbiol. Infect. 2006, 12, 913–917. [Google Scholar] [CrossRef]
- Studenicová, C.; Ondriska, F.; Holková, R. Séroprevalencia Toxoplasma gondii u gravidných zien na Slovensku [Seroprevalence of Toxoplasma gondii among pregnant women in Slovakia]. Epidemiol. Mikrobiol. Imunol. 2008, 57, 8–13. (In Slovak) [Google Scholar]
- Pandolfi, E.; Gesualdo, F.; Rizzo, C.; Bella, A.; Agricola, E.; Mastroiacovo, P.; Tozzi, A.E. Global seroprevalence of rubella among pregnant and childbearing age women: A meta-analysis. Eur. J. Public Health 2017, 27, 530–537. [Google Scholar] [CrossRef]
- O’Dwyer, V.; Bonham, S.; Mulligan, A.; O’Connor, C.; Farah, N.; Kennelly, M.M.; Turner, M.J. Antenatal rubella immunity in Ireland. Ir. Med. J. 2013, 106, 232–235. [Google Scholar]
- Barlinn, R.; Vainio, K.; Samdal, H.H.; Nordbø, S.A.; Nøkleby, H.; Dudman, S.G. Susceptibility to cytomegalovirus, parvovirus B19 and age-dependent differences in levels of rubella antibodies among pregnant women. J. Med. Virol. 2014, 86, 820–826. [Google Scholar] [CrossRef]
- Dominguez, A.; Plans, P.; Espuñes, J.; Costa, J.; Torner, N.; Cardeñosa, N.; Plasencia, A.; Salleras, L. Rubella immune status of indigenous and immigrant pregnant women in Catalonia, Spain. Eur. J. Public Health 2007, 17, 560–564. [Google Scholar] [CrossRef]
- Plans, P.; de Ory, F.; Campins, M.; Álvarez, E.; Payà, T.; Guisasola, E.; Compte, C.; Vellbé, K.; Sánchez, C.; Lozano, M.J.; et al. Prevalence of anti-rubella, anti-measles and anti-mumps IgG antibodies in neonates and pregnant women in Catalonia (Spain) in 2013: Susceptibility to measles increased from 2003 to 2013. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1161–1171. [Google Scholar] [CrossRef]
- Ramos, J.M.; Milla, A.; Rodríguez, J.C.; Gutiérrez, F. Rubella immune status among immigrant and nonimmigrant women in Spain. J. Med. Virol. 2012, 84, 548–550. [Google Scholar] [CrossRef]
- Kakoulidou, M.; Forsgren, M.; Lewensohn-Fuchs, I.; Johansen, K. Serum levels of rubella-specific antibodies in Swedish women following three decades of vaccination programmes. Vaccine 2010, 28, 1002–1007. [Google Scholar] [CrossRef]
- Ogundele, M.; Ghebrehewet, S.; Chawla, A. Some factors affecting rubella seronegative prevalence among pregnant women in a North West England region between April 2011 and March 2013. J. Public Health 2016, 38, 243–249. [Google Scholar] [CrossRef]
- Calimeri, S.; Capua, A.; La Fauci, V.; Squeri, R.; Grillo, O.C.; Lo Giudice, D. Prevalence of serum anti-rubella virus antibodies among pregnant women in southern Italy. Int. J. Gynaecol. Obstet. 2012, 116, 211–213. [Google Scholar] [CrossRef]
- Marchi, S.; Viviani, S.; Montomoli, E.; Trombetta, C.M. Elimination of congenital rubella: A seroprevalence study of pregnant women and women of childbearing age in Italy. Hum. Vaccin. Immunother. 2020, 16, 895–898. [Google Scholar] [CrossRef]
- Gonçalves, G.; Nascimento, M.S.; Réu, C.; Cutts, F.T. Levels of rubella antibody among vaccinated and unvaccinated Portuguese mothers and their newborns. Vaccine 2006, 24, 7142–7147. [Google Scholar] [CrossRef]
- Gorun, F.; Malita, D.; Ciohat, I.; Vilibic-Cavlek, T.; Feier, H.; Tabain, I.; Crainam, M.; Cretu, O.; Navolan, D. Prevalence of Rubella Antibodies among Fertile Women in the West of Romania, 18 Years after the Implementation of Immunization. Vaccines 2021, 9, 104. [Google Scholar] [CrossRef]
- Patić, A.; Štrbac, M.; Petrović, V.; Milošević, V.; Ristić, M.; Hrnjaković Cvjetković, I.; Medić, S. Seroepidemiological study of rubella in Vojvodina, Serbia: 24 years after the introduction of the MMR vaccine in the national immunization programme. PLoS ONE 2020, 15, e0227413. [Google Scholar] [CrossRef]
- Vilajeliu, A.; García-Basteiro, A.L.; Valencia, S.; Barreales, S.; Oliveras, L.; Calvente, V.; Goncé, A.; Bayas, J.M. Rubella susceptibility in pregnant women and results of a postpartum immunization strategy in Catalonia, Spain. Vaccine 2015, 33, 1767–1772. [Google Scholar] [CrossRef]
- Porobic-Jahic, H.; Skokic, F.; Ahmetagic, S.; Piljic, D.; Jahic, R.; Petrovic, J. Cytomegalovirus Infection in Pregnancy—Our Experiences. Med. Arch. 2019, 73, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, C.M.; Viviani, S.; Montomoli, E.; Marchi, S. Seroprevalence of antibodies to cytomegalovirus in pregnant women in the Apulia region (Italy). J. Prev. Med. Hyg. 2021, 62, E372–E376. [Google Scholar] [CrossRef] [PubMed]
- Kuessel, L.; Husslein, H.; Marschalek, J.; Brunner, J.; Ristl, R.; Popow-Kraupp, T.; Kiss, H. Prediction of Maternal Cytomegalovirus Serostatus in Early Pregnancy: A Retrospective Analysis in Western Europe. PLoS ONE 2015, 10, e0145470. [Google Scholar] [CrossRef] [PubMed]
- Pembrey, L.; Raynor, P.; Griffiths, P.; Chaytor, S.; Wright, J.; Hall, A.J. Seroprevalence of cytomegalovirus, Epstein Barr virus and varicella zoster virus among pregnant women in Bradford: A cohort study. PLoS ONE 2013, 8, e81881. [Google Scholar] [CrossRef] [PubMed]
- Antona, D.; Lepoutre, A.; Fonteneau, L.; Baudon, C.; Halftermeyer-Zhou, F.; LE Strat, Y.; Lévy-Bruhl, D. Seroprevalence of cytomegalovirus infection in France in 2010. Epidemiol. Infect. 2017, 145, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Enders, G.; Daiminger, A.; Lindemann, L.; Knotek, F.; Bäder, U.; Exler, S.; Enders, M. Cytomegalovirus (CMV) seroprevalence in pregnant women, bone marrow donors and adolescents in Germany, 1996–2010. Med. Microbiol. Immunol. 2012, 201, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Greye, H.; Wex, T.; Taneva, E.; Redlich, A.; Costa, S.D.; Rissmann, A. Cytomegalovirus seronegativity rate in pregnant women and primary cytomegalovirus infection during pregnancy in rural Germany. BMC Pregnancy Childbirth 2023, 23, 299. [Google Scholar] [CrossRef] [PubMed]
- Gaj, Z.; Rycel, M.; Wilczyński, J.; Nowakowska, D. Seroprewalencja zakazeń cytomegalowirusem w populacji polskich kobiet ciezarnych [Seroprevalence of cytomegalovirus infection in the population of Polish pregnant women]. Ginekol. Pol. 2012, 83, 337–341. [Google Scholar] [PubMed]
- Wujcicka, W.; Gaj, Z.; Wilczyński, J.; Sobala, W.; Spiewak, E.; Nowakowska, D. Impact of socioeconomic risk factors on the seroprevalence of cytomegalovirus infections in a cohort of pregnant Polish women between 2010 and 2011. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1951–1958. [Google Scholar] [CrossRef]
- Knowles, S.J.; Grundy, K.; Cahill, I.; Cafferkey, M.T.; Geary, M. Low cytomegalovirus sero-prevalence in Irish pregnant women. Ir. Med. J. 2005, 98, 210–212. [Google Scholar]
- Puhakka, L.; Sarvikivi, E.; Lappalainen, M.; Surcel, H.M.; Saxen, H. Decrease in seroprevalence for herpesviruses among pregnant women in Finland: Cross-sectional study of three time points 1992, 2002 and 2012. Infect. Dis. 2016, 48, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Radoi, C.L.; Zlatian, O.; Balasoiu, M.; Dragomir, T.-L.; Sorop, M.I.; Bagiu, I.C.; Boeriu, E.; Susan, M.; Sorop, B.; Oprisoni, L.A.; et al. Seroprevalence of Anti-Cytomegalovirus Antibodies in Pregnant Women from South-West Romania. Microorganisms 2024, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Gorun, F.; Motoi, S.; Malita, D.; Navolan, D.B.; Nemescu, D.; Olariu, T.R.; Craina, M.; Vilibic-Cavlek, T.; Ciohat, I.; Boda, D.; et al. Cytomegalovirus seroprevalence in pregnant women in the western region of Romania: A large-scale study. Exp. Ther. Med. 2020, 20, 2439–2443. [Google Scholar] [CrossRef] [PubMed]
- Kucera, P.; Gerber, S.; Marques-Vidal, P.; Meylan, P.R. Seroepidemiology of herpes simplex virus type 1 and 2 in pregnant women in Switzerland: An obstetric clinic based study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 160, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Uusküla, A.; Nygard-Kibur, M.; Cowan, F.M.; Mayaud, P.; French, R.S.; Robinson, J.N.; Brown, D.W. The burden of infection with herpes simplex virus type 1 and type 2: Seroprevalence study in Estonia. Scand. J. Infect. Dis. 2004, 36, 727–732. [Google Scholar] [CrossRef] [PubMed]
- LeGoff, J.; Saussereau, E.; Boulanger, M.C.; Chemin, C.; Si-Mohamed, A.; Bélec, L.; Maisonneuve, L. Unexpected high prevalence of herpes simplex virus (HSV) type 2 seropositivity and HSV genital shedding in pregnant women living in an East Parissuburban area. Int. J. STD AIDS 2007, 18, 593–595. [Google Scholar] [CrossRef]
- Marchi, S.; Trombetta, C.M.; Gasparini, R.; Temperton, N.; Montomoli, E. Epidemiology of herpes simplex virus type 1 and 2 in Italy: A seroprevalence study from 2000 to 2014. J. Prev. Med. Hyg. 2017, 58, E27–E33. [Google Scholar] [PubMed]
- Ozdemir, R.; Er, H.; Baran, N.; Vural, A.; Demirci, M. HSV-1 and HSV-2 seropositivity rates in pregnant women admitted to Izmir Ataturk Research and Training Hospital, Turkey. Mikrobiyol. Bul. 2009, 43, 709–711. [Google Scholar] [PubMed]
- Alanen, A.; Kahala, K.; Vahlberg, T.; Koskela, P.; Vainionpää, R. Seroprevalence, incidence of prenatal infections and reliability of maternal history of varicella zoster virus, cytomegalovirus, herpes simplex virus and parvovirus B19 infection in South West-ern Finland. BJOG 2005, 112, 50–56. [Google Scholar] [CrossRef]
- Gaytant, M.A.; Steegers, E.A.; van Laere, M.; Semmekrot, B.A.; Groen, J.; Weel, J.F.; van der Meijden, W.I.; Boer, K.; Galama, J.M. Seroprevalences of herpes simplex virus type 1 and type 2 among pregnant women in the Netherlands. Sex Transm. Dis. 2002, 29, 710–714. [Google Scholar] [CrossRef]
- Patton, M.E.; Bernstein, K.; Liu, G.; Zaidi, A.; Markowitz, L.E. Seroprevalence of Herpes Simplex Virus Types 1 and 2 Among Pregnant Women and Sexually Active, Nonpregnant Women in the United States. Clin. Infect. Dis. 2018, 67, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Arama, V.; Vladareanu, R.; Mihailescu, R.; Streinu Cercel, A.; Mihai, C.; Hristea, A.; Iosipenco, M.; Stefan Arama, S.; Rabilloud, M. Seroprevalence and Risk Factors Associated with Herpes Simplex Virus Infection among Pregnant Women. J. Perinat. Med. 2008, 36, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Korr, G.; Thamm, M.; Czogiel, I.; Poethko-Mueller, C.; Bremer, V.; Jansen, K. Decreasing seroprevalence of herpes simplex virus type 1 and type 2 in Germany leaves many people susceptible to genital infection: Time to raise awareness and enhance control. BMC Infect. Dis. 2017, 17, 471. [Google Scholar] [CrossRef]
- Hettmann, A.; Gerle, B.; Barcsay, E.; Csiszár, C.; Takács, M. Seroprevalence of HSV-2 in Hungary and comparison of the HSV-2 prevalence of pregnant and infertile women. Acta Microbiol. Immunol. Hung. 2008, 55, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, A.G.; Gorun, F.; Ciohat, I.; Navolan, D.; Malita, D.; Vilibic-Cavlek, T.; Dahma, G.; Neamtu, R.; Popescu, D.; Cioca, A.; et al. Simultaneous Seroprevalence to Toxoplasma gondii, Cytomegalovirus and Rubella Virus in Childbearing Women from Western Romania. Medicina 2021, 57, 927. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, A.G.; Stoian, D.L.; Daescu, A.M.; Motofelea, A.C.; Ciohat, I.M.; Navolan, D.B.; Vilibic-Cavlek, T.; Bogdanic, M.; Nemescu, D.; Tomescu, L.; et al. The Impact of Latent Cytomegalovirus Infection on Spontaneous Abortion History and Pregnancy Outcomes in Romanian Pregnant Women. Microorganisms 2024, 12, 731. [Google Scholar] [CrossRef] [PubMed]
- Aboudy, Y.; Fogel, A.; Barnea, B.; Mendelson, E.; Yosef, L.; Frank, T.; Shalev, E. Subclinical rubella reinfection during pregnancy followed by transmission of virus to the fetus. J. Infect 1997, 34, 273–276. [Google Scholar] [CrossRef]
- Bullens, D.; Smets, K.; Vanhaesebrouck, P. Congenital rubella syndrome after maternal reinfection. Clin. Pediatr. 2000, 39, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.; Norwitz, E.R.; Stiller, R.J. Cytomegalovirus infection in pregnancy: Should all women be screened? Rev. Obstet. Gynecol. 2010, 3, 172–179. [Google Scholar]
- Ciobanu, A.M.; Gica, N.; Gica, C.; Botezatu, R.; Furtuna, M.; Peltecu, G.; Panaitescu, A.M. Cytomegalovirus Infection in Pregnancy—Counselling Challenges in the Setting of Generalised Testing. Maedica 2020, 15, 253–257. [Google Scholar] [CrossRef]
- Elbez-Rubinstein, A.; Ajzenberg, D.; Dardé, M.L.; Cohen, R.; Dumètre, A.; Year, H.; Gondon, E.; Janaud, J.C.; Thulliez, P. Congenital toxoplasmosis and reinfection during pregnancy: Case report, strain characterization, experimental model of reinfection, and review. J. Infect. Dis. 2009, 199, 280–285. [Google Scholar] [CrossRef]
TORCH Pathogen | Method (Reference Values) | |||
---|---|---|---|---|
IgM Antibodies | IgG Antibodies | IgG Avidity | Western Blot | |
T. gondii | ELFA (Index < 0.55 negative, 0.55–0.65 borderline, >0.65 positive) | ELFA (IU/mL < 4 negative, 4–8 borderline, >8 positive) | ELFA (Index < 0.3 low, 0.3–0.5 borderline, >0.5 high) | |
RUBV | ELISA (NTU < 9 negative, 9–11 borderline, >11 positive) | ELISA (IU/mL < 10 negative, 10–15 borderline, 15 positive) | ELISA (AI % < 40 low, 40–60 borderline, >60% high) | |
CMV | ELISA (AI < 9 negative, 9–11 borderline, >11 positive) | ELISA (AI < 9 negative, 9–11 borderline, >11 positive) | ELISA (AI % < 40 low, 40–60 borderline, >60% high) | |
HSV-1 | ELISA (VE < 9 negative, 9–11 borderline, >11 positive) | ELISA (VE < 9 negative, 9–11 borderline, >11 positive) | Positive, borderline, negative | |
HSV-2 | ELISA (VE < 9 negative, 9–11 borderline, >11 positive) | ELISA (VE < 9 negative, 9–11 borderline, >11 positive) | Positive, borderline, negative |
Characteristic | Tested N (%) | Toxoplasma gondii IgM | Toxoplasma gondii IgG | |||||
---|---|---|---|---|---|---|---|---|
N (%) | 95% CI | p | N (%) | 95% CI | p | |||
Age group | ≤20 years | 16 (1.6) | 1 (6.3) | 0.1–30.2 | 0.007 | 4 (25.0) | 7.3–52.4 | 0.896 |
21–25 years | 87 (8.4) | 0 (0) | NA | 18 (20.7) | 12.7–30.7 | |||
26–30 years | 300 (29.1) | 1 (0.3) | <0.1–1.2 | 63 (21.0) | 16.5–26.1 | |||
31–35 years | 373 (36.1) | 2 (0.5) | 0.1–1.9 | 70 (18.8) | 14.9–23.1 | |||
36–40 years | 213 (20.6) | 0 (0) | NA | 42 (19.7) | 14.6–25.7 | |||
>40 years | 43 (4.2) | 0 (0) | NA | 11 (25.6) | 13.5–41.2 | |||
Area of residence | Urban | 725 (70.3) | 2 (0.3) | <0.1–1.0 | 0.375 | 124 (17.1) | 14.4–20 | <0.001 |
Suburban/rural | 307 (29.7) | 2 (0.7) | 0.1–2.3 | 84 (27.4) | 22.5–32.7 | |||
Geographic region | Continental | 724 (70.2) | 3 (0.4) | <0.1–1.2 | 0.832 | 161 (22.2) | 19.3–25.4 | 0.011 |
Coastal | 308 (29.8) | 1 (0.3) | <0.1–1.8 | 47 (15.3) | 11.4–19.8 | |||
Obstetric history | Non-pregnant | 271 (26.3) | 0 (0) | NA | 0.247 | 64 (23.6) | 18.7–29.1 | 0.204 |
Normal pregnancy | 608 (58.9) | 4 0.7) | 0.2–1.7 | 118 (19.4) | 16.3–22.8 | |||
Unfavorable obstetric history | 153 (14.8) | 0 (0) | NA | 26 (17.0) | 11.4–23.9 |
Characteristic | Tested N (%) | Rubella Virus IgM | Rubella Virus IgG | |||||
---|---|---|---|---|---|---|---|---|
N (%) | 95% CI | p | N (%) | 95% CI | p | |||
Age group | ≤20 years | 16 (1.6) | 0 (0) | NA | 0.378 | 13 (81.3) | 54.4–96.0 | 0.319 |
21–25 years | 87 (8.4) | 1 (1.1) | <0.1–6.2 | 83 (95.4) | 88.6–98.7 | |||
26–30 years | 300 (29.1) | 0 (0) | NA | 268 (89.3) | 85.3–92.4 | |||
31–35 years | 373 (36.1) | 1 (0.3) | <0.1–1.5 | 341 (91.4) | 88.1–94.1 | |||
36–40 years | 213 (20.6) | 0 (0) | NA | 197 (92.5) | 88.1–95.6 | |||
>40 years | 43 (4.2) | 0 (0) | NA | 40 (93.0) | 80.9–98.5 | |||
Area of residence | Urban | 725 (70.3) | 2 (0.3) | <0.1–1 | 0.357 | 662 (91.3) | 89–93.3 | 0.956 |
Suburban/rural | 307 (29.7) | 0 (0) | NA | 280 (91.2) | 87.5–94.1 | |||
Geographic region | Continental | 724 (70.2) | 2 (0.3) | <0.1–1 | 0.356 | 664 (91.7) | 89.5–93.6 | 0.449 |
Coastal | 308 (29.8) | 0 (0) | NA | 278 (90.3) | 86.4–93.3 | |||
Obstetric history | Non-pregnant | 271 (26.3) | 0 (0) | NA | 0.498 | 248 (91.5) | 87.5–94.5 | 0.976 |
Normal pregnancy | 608 (58.9) | 2 (0.3) | <0.1–1.2 | 554 (91.1) | 88.6–93.3 | |||
Unfavorable obstetric history | 153 (14.8) | 0 (0) | NA | 140 (90.5) | 85.9–95.4 |
Characteristic | Tested N (%) | Cytomegalovirus IgM | Cytomegalovirus IgG | |||||
---|---|---|---|---|---|---|---|---|
N (%) | 95% CI | p | N (%) | 95% CI | p | |||
Age group | ≤20 years | 16 (1.6) | 1 (6.3) | 0.2–39.2 | 0.248 | 10 (62.5) | 35.4–84.8 | 0.863 |
21–25 years | 87 (8.4) | 10 (11.5) | 5.7–20.1 | 58 (66.7) | 55.7–76.4 | |||
26–30 years | 300 (29.1) | 22 (7.3) | 4.7–10.9 | 206 (69.7) | 63.1–73.9 | |||
31–35 years | 373 (36.1) | 17 (4.6) | 2.7–7.2 | 270 (72.4) | 67.5–76.9 | |||
36–40 years | 213 (20.6) | 13 (6.1) | 3.3–10.2 | 150 (70.4) | 63.8–76.5 | |||
>40 years | 43 (4.2) | 2 (4.7) | 0.6–15.8 | 31 (72.1) | 56.3–84.7 | |||
Area of residence | Urban | 725 (70.3) | 47 (6.5) | 4.8–8.5 | 0.708 | 501 (69.1) | 65.6–72.5 | 0.119 |
Suburban/rural | 307 (29.7) | 18 (5.9) | 3.5–9.1 | 227 (73.9) | 68.7–78.8 | |||
Geographic region | Continental | 724 (70.2 | 41 (5.7) | 4.1–7.6 | 0.198 | 507 (70.0) | 66.5–73.3 | 0.587 |
Coastal | 308 (29.8 | 24 (7.8) | 5.1–11.4 | 221 (71.8) | 66.4–76.7 | |||
Obstetric history | Non-pregnant | 271 (26.3) | 21 (7.7) | 4.9–11.6 | 0.495 | 188 (69.4) | 63.5–74.8 | 0.393 |
Normal pregnancy | 608 (58.9) | 36 (5.9) | 4.2–8.1 | 425 (69.9) | 66.1–73.5 | |||
Unfavorable obstetric history | 153 (14.8) | 8 (5.2) | 2.3–10 | 115 (75.2) | 67.5–81.8 |
Characteristic | Tested N (%) | Herpes Simplex Type 1 IgM | Herpes Simplex Type 1 IgG | |||||
---|---|---|---|---|---|---|---|---|
N (%) | 95% CI | p | N (%) | 95% CI | p | |||
Age group | ≤20 years | 16 (1.6) | 0 (0) | NA | 0.538 | 12 (75.0) | 47.6–92.7 | 0.598 |
21–25 years | 87 (8.4) | 0 (0) | NA | 57 (65.5) | 54.6–75.4 | |||
26–30 years | 300 (29.1) | 5 (1.7) | 0.5–3.8 | 191 (63.7) | 57.9–69.1 | |||
31–35 years | 373 (36.1) | 2 (0.5) | <0.1–1.9 | 249 (66.8) | 61.7–71.5 | |||
36–40 years | 213 (20.6) | 2 (0.9) | 0.1–3.4 | 148 (69.5) | 62.8–75.6 | |||
>40 years | 43 (4.2) | 1 (2.3) | <0.1–12.3 | 32 (74.4) | 58.8–86.5 | |||
Area of residence | Urban | 725 (70.3) | 9 (1.2) | 0.6–2.3 | 0.170 | 469 (64.7) | 61.1–68.2 | 0.030 |
Suburban/rural | 307 (29.7) | 1 (0.3) | <0.1–1.8 | 220 (71.7) | 66.3–76.6 | |||
Geographic region | Continental | 724 (70.2) | 7 (1.0) | 0.4–2 | 0.991 | 484 (66.9) | 63.3–70.3 | 0.927 |
Coastal | 308 (29.8) | 3 (1.0) | 0.2–2.8 | 205 (66.6) | 61–71.8 | |||
Obstetric history | Non-pregnant | 271 (26.3) | 2 (0.7) | <0.1–2.6 | 0.300 | 192 (70.8) | 65–76.2 | 0.211 |
Normal pregnancy | 608 (58.9) | 8 (1.3) | 0.6–2.6 | 394 (64.8) | 60.9–68.6 | |||
Unfavorable obstetric history | 153 (14.8) | 0 (0) | NA | 103 (67.3) | 59.3–74.7 |
Characteristic | Tested N (%) | Herpes Simplex Type 2 IgM | Herpes Simplex Type 2 IgG | |||||
---|---|---|---|---|---|---|---|---|
N (%) | 95% CI | p | N (%) | 95% CI | p | |||
Age group | ≤20 years | 16 (1.6) | 0 (0) | NA | 0.880 | 0 (0) | NA | 0.005 |
21–25 years | 87 (8.4) | 0 (0) | NA | 0 (0) | NA | |||
26–30 years | 300 (29.1) | 0 (0) | NA | 5 (1.7) | 0.5–3.8 | |||
31–35 years | 373 (36.1) | 1 (0.3) | <0.1–1.5 | 13 (3.5) | 1.9–5.9 | |||
36–40 years | 213 (20.6) | 0 (0) | NA | 14 (6.6) | 3.6–10.8 | |||
>40 years | 43 (4.2) | 0 (0) | NA | 4 (9.3) | 2.6–22.1 | |||
Area of residence | Urban | 725 (70.3) | 0 (0) | NA | 0.124 | 27 (3.7) | 2.5–5.4 | 0.526 |
Suburban/rural | 307 (29.7) | 1 (0.3) | <0.1–1.8 | 9 (2.9) | 1.3–5.5 | |||
Geographic region | Continental | 724 (70.2) | 1 (0.1) | <0.1–0.8 | 0.514 | 27 (3.7) | 2.5–5.4 | 0.518 |
Coastal | 308 (29.8) | 0 (0) | NA | 9 (2.9) | 1.3–5.5 | |||
Obstetric history | Non-pregnant | 271 (26.3) | 0 (0) | NA | 0.706 | 14 (5.2) | 2.9–8.5 | 0.106 |
Normal pregnancy | 608 (58.9) | 1 (0.2) | <0.1–1 | 20 (3.3) | 2–5 | |||
Unfavorable obstetric history | 153 (14.8) | 0 (0) | NA | 2 (1.3) | 0.2–4.6 |
Characteristic | Tested N (%) | Toxoplasma gondii– Rubella Virus IgG | Toxoplasma gondii– Cytomegalovirus IgG | Rubella Virus– Cytomegalovirus IgG | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N (%) | 95% CI | p | N (%) | 95% CI | p | N (%) | 95% CI | p | ||
Age group | ||||||||||
≤20 years | 16 (1.6) | 4 (25.0) | 7.0–52.4 | 0.754 | 2 (12.5) | 1.5–38.3 | 0.962 | 7 (43.8) | 19.8–79.1 | 0.408 |
21–25 years | 87 (8.4) | 18 (20.7) | 12.7–30.7 | 12 (13.8) | 7.3–22.9 | 56 (64.4) | 53.4–74.4 | |||
26–30 years | 300 (29.1) | 59 (19.7) | 15.3–24.6 | 44 (14.7) | 10.9–19.2 | 185 (61.7) | 55.9–67.2 | |||
31–35 years | 373 (36.1) | 63 (16.9) | 13.2–21.1 | 52 (13.9) | 10.6–17.9 | 250 (67.0) | 62.0–71.8 | |||
36–40 years | 213 (20.6) | 36 (16.9) | 12.1–22.6 | 28 (13.1) | 8.9–18.4 | 137 (64.3) | 57.5–70.7 | |||
>40 years | 43 (4.2) | 10 (23.3) | 11.8–38.6 | 8 (18.6) | 8.4–33.4 | 28 (65.1) | 49.1–79.0 | |||
Area of residence | ||||||||||
Urban | 725 (70.3) | 112 (15.4) | 12.9–18.3 | <0.001 | 85 (11.7) | 9.5–14.3 | <0.001 | 458 (63.2) | 59.5–66.7 | 0.270 |
Suburban/rural | 307 (29.7) | 78 (25.4) | 20.6–30.7 | 61 (19.9) | 15.6–24.5 | 205 (66.8) | 61.2–72.0 | |||
Geographic region | ||||||||||
Continental | 724 (70.2) | 145 (20.0) | 17.2–23.1 | 0.04 | 115 (15.9) | 13.3–18.8 | 0.014 | 465 (64.2) | 60.6–67.7 | 0.986 |
Coastal | 308 (29.8) | 45 (14.0) | 10.9–19.1 | 31 (10.1) | 6.9–14 | 198 (63.3) | 58.7–69.6 | |||
Obstetric history | ||||||||||
Non-pregnant | 271 (26.3) | 57 (21.0) | 16.3–26.4 | 0.351 | 44 (16.2) | 12.1–21.2 | 172 (63.5) | 57.4–69.2 | 0.281 | |
Normal pregnancy | 608 (58.9) | 109 (17.9) | 15–21.2 | 83 (13.7) | 11.0–16.6 | 384 (63.2) | 59.2–67.0 | |||
Unfavorable obstetric history | 153 (14.8) | 24 (15.7) | 10.3–22.4 | 19 (12.4) | 7.6–18.7 | 107 (69.4) | 62.0–77.1 |
Characteristic | Tested N (%) | Toxoplasma gondii–Rubella Virus–Cytomegalovirus IgG | |||
---|---|---|---|---|---|
N (%) | 95% CI | p | |||
Age group | ≤20 years | 16 (1.6) | 2 (12.5) | 1.6–38.3 | 0.946 |
21–25 years | 87 (8.4) | 12 (13.8) | 7.3–22.9 | ||
26–30 years | 300 (29.1) | 42 (14.0) | 10.3–18.4 | ||
31–35 years | 373 (36.1) | 49 (13.1) | 9.9–17.0 | ||
36–40 years | 213 (20.6) | 25 (11.7) | 7.7–16.8 | ||
>40 years | 43 (4.2) | 7 (16.3) | 6.8–30.7 | ||
Area of residence | Urban | 725 (70.3) | 80 (11.0) | 8.8–13.5 | 0.002 |
Suburban/rural | 307 (29.7) | 57 (18.6) | 14.4–23.4 | ||
Geographic region | Continental | 724 (70.2) | 107 (14.8) | 12.3–17.6 | 0.029 |
Coastal | 308 (29.8) | 30 (9.7) | 6.7–13.6 | ||
Non-pregnant | 271 (26.3) | 40 (14.8) | 10.8–19.6 | 0.697 | |
Obstetric history | Normal pregnancy | 608 (58.9) | 78 (12.8) | 10.3–15.8 | |
Unfavorable obstetric history | 153 (14.8) | 19 (12.4) | 7.6–18.7 |
Characteristic | OR | 95% CI | p | AOR | 95% CI | p |
---|---|---|---|---|---|---|
Age (one-year increase) | 0.990 | 0.960–1.030 | 0.614 | 1.000 | 0.961–1.040 | 0.854 |
Suburban/rural (Ref.) vs. urban area of residence | 1.826 | 1.330–2.511 | <0.001 | 1.981 | 1.334–2.931 | 0.001 |
Continental (Ref.) vs. coastal geographic region | 1.587 | 1.120–2.268 | 0.011 | 1.912 | 1.217–3.012 | 0.005 |
Unfavorable obstetric history (Ref.) vs. normal pregnancy | 0.850 | 0.533–1.357 | 0.496 | 0.882 | 0.547–1.421 | 0.605 |
Characteristic | OR | 95% CI | p | AOR | 95% CI | p |
---|---|---|---|---|---|---|
Age (one-year increase) | 1.016 | 0.975–1.059 | 0.473 | 1.014 | 0.964–1.068 | 0.585 |
Suburban/rural (Ref.) vs. urban area of residence | 0.986 | 0.616–1.582 | 0.958 | 1.023 | 0.585–1.788 | 0.937 |
Continental (Ref.) vs. coastal geographic region | 1.195 | 0.754–1.912 | 0.450 | 1.458 | 0.855–2.488 | 0.167 |
Unfavorable obstetric history (Ref.) vs. normal pregnancy | 1.050 | 0.557–1.977 | 0.881 | 1.097 | 0.579–2.079 | 0.772 |
Characteristic | OR | 95% CI | p | AOR | 95% CI | p |
---|---|---|---|---|---|---|
Age (one-year increase) | 1.001 | 0.982–1.035 | 0.558 | 1.002 | 0.970–1.034 | 0.912 |
Suburban/rural (Ref.) vs. urban area of residence | 1.269 | 0.940–1.712 | 0.120 | 1.289 | 0.899–1.849 | 0.168 |
Continental (Ref.) vs. coastal geographic region | 0.920 | 0.684–1.235 | 0.578 | 0.983 | 0.690–1.403 | 0.927 |
Unfavorable obstetric history (Ref.) vs. normal pregnancy | 1.303 | 0.869–1.955 | 0.201 | 1.288 | 0.855–1.939 | 0.226 |
Characteristic | OR | 95% CI | p | AOR | 95% CI | p |
---|---|---|---|---|---|---|
Age (one-year increase) | 1.016 | 0.990–1.042 | 0.231 | 1.009 | 0.978–1.040 | 0.588 |
Suburban/rural (Ref.) vs. urban area of residence | 1.380 | 1.032–1.847 | 0.030 | 1.421 | 1.007–2.001 | 0.045 |
Continental (Ref.) vs. coastal geographic region | 1.013 | 0.764–1.344 | 0.927 | 1.035 | 0.740–1.449 | 0.841 |
Unfavorable obstetric history (Ref.) vs. normal pregnancy | 1.119 | 0.768–1.631 | 0.559 | 1.106 | 0.756–1.619 | 0.604 |
Characteristic | OR | 95% CI | p | AOR | 95% CI | p |
---|---|---|---|---|---|---|
Age (one-year increase) | 1.164 | 1.082–1.251 | <0.001 | 1.130 | 1.030–1.240 | 0.010 |
Suburban/rural (Ref.) vs. urban area of residence | 0.781 | 0.363–1.680 | 0.527 | 0.939 | 0.333–1.651 | 0.906 |
Continental (Ref.) vs. coastal geographic region | 1.287 | 0.598–2.771 | 0.519 | 1.695 | 0.553–5.181 | 0.356 |
Unfavorable obstetric history (Ref.) vs. normal pregnancy | 0.389 | 0.900–1.684 | 0.207 | 0.394 | 0.900–1.724 | 0.216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilibic-Cavlek, T.; Kolaric, B.; Belamaric, M.; Sviben, M.; Ferenc, T.; Navolan, D.; Bekic, V.; Milasincic, L.; Antolasic, L.; Vilibic, M.; et al. Screening for TORCH Antibodies in Croatian Childbearing-Aged Women, 2014–2023. Antibodies 2024, 13, 49. https://doi.org/10.3390/antib13020049
Vilibic-Cavlek T, Kolaric B, Belamaric M, Sviben M, Ferenc T, Navolan D, Bekic V, Milasincic L, Antolasic L, Vilibic M, et al. Screening for TORCH Antibodies in Croatian Childbearing-Aged Women, 2014–2023. Antibodies. 2024; 13(2):49. https://doi.org/10.3390/antib13020049
Chicago/Turabian StyleVilibic-Cavlek, Tatjana, Branko Kolaric, Marko Belamaric, Mario Sviben, Thomas Ferenc, Dan Navolan, Viktor Bekic, Ljiljana Milasincic, Ljiljana Antolasic, Maja Vilibic, and et al. 2024. "Screening for TORCH Antibodies in Croatian Childbearing-Aged Women, 2014–2023" Antibodies 13, no. 2: 49. https://doi.org/10.3390/antib13020049
APA StyleVilibic-Cavlek, T., Kolaric, B., Belamaric, M., Sviben, M., Ferenc, T., Navolan, D., Bekic, V., Milasincic, L., Antolasic, L., Vilibic, M., Vujica Ferenc, M., Reicher, E., Jezek, T., Ciohat, I., Parvanescu, R. C., Kos, M., & Bogdanic, M. (2024). Screening for TORCH Antibodies in Croatian Childbearing-Aged Women, 2014–2023. Antibodies, 13(2), 49. https://doi.org/10.3390/antib13020049