Development, Optimization and Evaluation of a Sensitive Enzyme-Linked Immunosorbent Assay (ELISA) Prototype for Detection of Chicken-Based IgY Polyclonal Antibodies against Toxins of D. polylepis Venom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Animals
2.3. Venoms and Antivenoms
2.4. Schedule of Immunizations for Hens
2.5. ELISA Parameters Optimization
2.5.1. Optimizing for Secondary Antibody
2.5.2. Antigen Coating Optimization
2.5.3. ELISA Substrates Optimizations
2.5.4. Primary Antibody (Serum) Dilution Optimization
2.6. ELISA Specificity and Sensitivity (Cut-Off Point) Determination
2.7. Inhibition ELISA for Detecting Toxins in Crude D. polylepis Venom
2.8. Evaluating Inhibition ELISA’s Ability for Toxin Identification in Other Dendroaspis spp. and Non-Dendroaspis spp. Venom Analysis
2.9. Toxins Detection in D. polylepis Venom-Injected Mice
2.10. Toxins of D. polylepis Venom Detection in Spiked Samples
2.11. Detection of Commercial D. polylepis Snake Antivenom Using Developed ELISA
2.12. Data Management
3. Results
3.1. Optimization Assays of ELISA Parameters
3.2. Cut-Off Point Determination for the ELISA
3.3. Assessment of Performance, Functionality and Overall Effectiveness of the Developed ELISA Prototype
3.3.1. ELISA for Crude D. polylepis and Other Venoms Toxin Screening
3.3.2. Toxin Detection in D. polylepis Venom-Challenged Mice
3.3.3. Toxin Detection in Spiked Samples
3.3.4. Detection of Antibodies in Commercial Antivenom Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Snakebite Envenoming: A Strategy for Prevention and Control; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Prim. 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Tianyi, F.-L.; Oluoch, G.O.; Otundo, D.; Ofwete, R.; Ngari, C.; Trelfa, A.; Ahmed, S.; Wang, D.; Smith, M.; Meta, V.; et al. Snakebite Prevalence and Risk Factors in a Nomadic Population in Samburu County, Kenya: A Community-Based Survey. PLoS Negl. Trop. Dis. 2024, 18, e0011678. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Rathuwithana, A.C.; Kasturiratne, A.; Lalloo, D.G.; de Silva, H.J. Underestimation of Snakebite Mortality by Hospital Statistics in the Monaragala District of Sri Lanka. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Tchoffo, D.; Kamgno, J.; Kekeunou, S.; Yadufashije, C.; Nana Djeunga, H.C.; Nkwescheu, A.S. High Snakebite Underreporting Rate in the Centre Region of Cameroon: An Observational Study. BMC Public Health 2019, 19, 1040. [Google Scholar] [CrossRef] [PubMed]
- Coombs, M.D.; Dunachie, S.J.; Brooker, S.; Haynes, J.; Church, J.; Warrell, D.A. Snake Bites in Kenya: A Preliminary Survey of Four Areas. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Snow, R.; Bronzan, R.; Roques, T.; Nyamawi, C.; Murphy, S.; Marsh, K. The Prevalence and Morbidity of Snake Bite and Treatment-Seeking Behaviour among a Rural Kenyan Population. Ann. Trop. Med. Parasitol. 1994, 88, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Omara, T. Plants Used in Antivenom Therapy in Rural Kenya: Ethnobotany and Future Perspectives. J. Toxicol. 2020, 2020, 1828521. [Google Scholar] [CrossRef] [PubMed]
- Malesi, T. ‘Ineffective’ India-Made Antivenoms Recalled in Kenya, Country Faces Snakebite Crisis. DownToEarth, Africa News 2023. Available online: https://www.downtoearth.org.in/news/africa/-ineffective-india-made-antivenoms-recalled-in-kenya-country-faces-snakebite-crisis-89125 (accessed on 15 May 2024).
- MoH-Kenya. Guidelines for the Prevention Diagnosis and Management of Snakebite Envenoming in Kenya; MoH-Kenya: Nairobi, Kenya, 2019. [Google Scholar]
- Okumu, M.O.; Mbaria, J.M.; Gikunju, J.K.; Mbuthia, P.G.; Madadi, V.O.; Ochola, F.O. Enzymatic Activity and Brine Shrimp Lethality of Venom from the Large Brown Spitting Cobra (Naja ashei) and Its Neutralization by Antivenom. BMC Res. Notes 2020, 13, 325. [Google Scholar] [CrossRef]
- Manson, E.Z.; Mutinda, K.C.; Gikunju, J.K.; Bocian, A.; Hus, K.K.; Petrílla, V.; Legáth, J.; Kimotho, J.H. Development of an Inhibition Enzyme-Linked Immunosorbent Assay (ELISA) Prototype for Detecting Cytotoxic Three-Finger Toxins (3FTxs) in African Spitting Cobra Venoms. Molecules 2022, 27, 888. [Google Scholar] [CrossRef]
- Potet, J.; Smith, J.; McIver, L. Reviewing Evidence of the Clinical Effectiveness of Commercially Available Antivenoms in Sub-Saharan Africa Identifies the Need for a Multi-Centre, Multi-Antivenom Clinical Trial. PLoS Negl. Trop. Dis. 2019, 13, e0007551. [Google Scholar] [CrossRef] [PubMed]
- Larson, P.S.; Ndemwa, M.; Thomas, A.F.; Tamari, N.; Diela, P.; Changoma, M.; Mohamed, A.; Larson, M.C.; Ketenci, K.C.; Goto, K.; et al. Snakebite Victim Profiles and Treatment-Seeking Behaviors in Two Regions of Kenya: Results from a Health Demographic Surveillance System. Trop. Med. Health 2022, 50, 31. [Google Scholar] [CrossRef]
- Brown, N.I. Consequences of Neglect: Analysis of the Sub-Saharan African Snake Antivenom Market and the Global Context. PLoS Negl. Trop. Dis. 2012, 6, e1670. [Google Scholar] [CrossRef] [PubMed]
- Selvanayagam, Z.; Gnanavendhan, S.; Ganesh, K.; Rajagopal, D.; Subba Rao, P. ELISA for the Detection of Venoms from Four Medically Important Snakes of India. Toxicon 1999, 37, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.V.; Selvanayagam, Z.E.; Gopalakrishnakone, P.; Eng, K.H. A New Avidin–Biotin Optical Immunoassay for the Detection of Beta-Bungarotoxin and Application in Diagnosis of Experimental Snake Envenomation. J. Immunol. Methods 2002, 260, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Theakston, R.D.; Jane Lloyd-Jones, M.; Reid, H. Micro-ELISA for Detecting and Assaying Snake Venom and Venom-Antibody. Lancet 1977, 310, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Quyen, L.K.; Eng, K.H.; Gopalakrishnakone, P. Immunogenicity of Venoms from Four Common Snakes in the South of Vietnam and Development of ELISA Kit for Venom Detection. J. Immunol. Methods 2003, 282, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Warrell, M.J.; Warrell, D.A.; Bidwell, D.; Voller, A. A Critical Reappraisal of the Use of Enzyme-Linked Immunosorbent Assays in the Study of Snake Bite. Toxicon 1986, 24, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Brunda, G.; Sashidhar, R.B.; Sarin, R.K. Use of Egg Yolk Antibody (IgY) as an Immunoanalytical Tool in the Detection of Indian Cobra (Naja Naja Naja) Venom in Biological Samples of Forensic Origin. Toxicon 2006, 48, 183–194. [Google Scholar] [CrossRef]
- Brunda, G.; Sashidhar, R.B. Epidemiological Profile of Snake-Bite Cases from Andhra Pradesh Using Immunoanalytical Approach. Indian J. Med. Res. 2007, 125, 661–668. [Google Scholar]
- Ariaratnam, C.A.; Sheriff, M.H.; Arambepola, C.; Theakston, R.D.; Warrell, D.A. Syndromic Approach to Treatment of Snake Bite in Sri Lanka Based on Results of a Prospective National Hospital-Based Survey of Patients Envenomed by Identified Snakes. Am. J. Trop. Med. Hyg. 2009, 81, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Ariaratnam, C.A.; Thuraisingam, V.; Kularatne, S.A.M.; Sheriff, M.H.R.; Theakston, R.D.G.; de Silva, A.; Warrell, D.A. Frequent and Potentially Fatal Envenoming by Hump-Nosed Pit Vipers (Hypnale Hypnale and H. nepa) in Sri Lanka: Lack of Effective Antivenom. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Alirol, E.; Sharma, S.K.; Bawaskar, H.S.; Kuch, U.; Chappuis, F. Snake Bite in South Asia: A Review. PLoS Negl. Trop. Dis. 2010, 4, e603. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.B.; Faiz, M.A.; Rahman, M.R.; Jalil, M.M.A.; Ahsan, M.F.; Theakston, R.D.G.; Warrell, D.A.; Kuch, U. Snake Bite in Chittagong Division, Bangladesh: A Study of Bitten Patients Who Developed No Signs of Systemic Envenoming. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Warrell, D.A. Snake Bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Pathmeswaran, A.; Kasturiratne, A.; Fonseka, M.; Nandasena, S.; Lalloo, D.G.; de Silva, H.J. Identifying the Biting Species in Snakebite by Clinical Features: An Epidemiological Tool for Community Surveys. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 874–878. [Google Scholar] [CrossRef] [PubMed]
- De Nishioka, S.A.; Silveira, P.V.P. Philodryas Patagoniensis Bite and Local Envenoming. Rev. Inst. Med. Trop. Sao Paulo 1994, 36, 279–281. [Google Scholar] [CrossRef]
- Isbister, G.K. Snake Antivenom Research: The Importance of Case Definition. Emerg. Med. J. 2005, 22, 399–400. [Google Scholar] [CrossRef]
- Maduwage, K.P.; Gawarammana, I.B.; Gutiérrez, J.M.; Kottege, C.; Dayaratne, R.; Premawardena, N.P.; Jayasingha, S. Enzyme Immunoassays for Detection and Quantification of Venoms of Sri Lankan Snakes: Application in the Clinical Setting. PLoS Negl. Trop. Dis. 2020, 14, e0008668. [Google Scholar] [CrossRef]
- Liu, C.-C.; Yu, J.-S.; Wang, P.-J.; Hsiao, Y.-C.; Liu, C.-H.; Chen, Y.-C.; Lai, P.-F.; Hsu, C.-P.; Fann, W.-C.; Lin, C.-C. Development of Sandwich ELISA and Lateral Flow Strip Assays for Diagnosing Clinically Significant Snakebite in Taiwan. PLoS Negl. Trop. Dis. 2018, 12, e0007014. [Google Scholar] [CrossRef]
- Silva, A.; Gunawardena, P.; Weilgama, D.; Maduwage, K.; Gawarammana, I. Comparative In-Vivo Toxicity of Venoms from South Asian Hump-Nosed Pit Vipers (Viperidae: Crotalinae: Hypnale). BMC Res. Notes 2012, 5, 471. [Google Scholar] [CrossRef]
- Islam, M.R.; Jones, R.C. An Enzyme-linked Immunosorbent Assay for Measuring Antibody Titre against Avian Reovirus Using a Single Dilution of Serum. Avian Pathol. 1988, 17, 411–425. [Google Scholar] [CrossRef]
- Sharma, N.; Hanif, S.; Upadhyay, D.; Chhikara, M.K. Inhibition ELISA as a Putative Tool for the Identification and Quantification of Meningococcal A and X Polysaccharides at Various Stages of Vaccine Development. J. Immunol. Methods 2019, 473, 112634. [Google Scholar] [CrossRef]
- Laustsen, A.H.; Engmark, M.; Clouser, C.; Timberlake, S.; Vigneault, F.; Gutiérrez, J.M.; Lomonte, B. Exploration of Immunoglobulin Transcriptomes from Mice Immunized with Three-Finger Toxins and Phospholipases A2 from the Central American Coral Snake, Micrurus Nigrocinctus. PeerJ 2017, 5, e2924. [Google Scholar] [CrossRef]
- Goka, A.K.; Farthing, M.J. The Use of 3,3’,5,5’-Tetramethylbenzidine as a Peroxidase Substrate in Microplate Enzyme-Linked Immunosorbent Assay. J. Immunoass. 1987, 8, 29–41. [Google Scholar] [CrossRef]
- Hosoda, H.; Takasaki, W.; Oe, T.; Tsukamoto, R.; Nambara, T. A Comparison of Chromogenic Substrates for Horseradish Peroxidase as a Label in Steroid Enzyme Immunoassay. Chem. Pharm. Bull. 1986, 34, 4177–4182. [Google Scholar] [CrossRef]
- Aalten, M.; Bakhuis, C.F.J.; Asaggau, I.; Wulfse, M.; van Binsbergen, M.F.; Arntz, E.R.A.N.; Troenokarso, M.F.; Oediet Doebe, J.L.R.; Mahamuud, U.; Belbachir, L.; et al. The Clinical Course and Treatment of Black Mamba (Dendroaspis polylepis) Envenomations: A Narrative Review. Clin. Toxicol. 2021, 59, 860–868. [Google Scholar] [CrossRef]
- Hodgson, P.S.; Davidson, T.M. Biology and Treatment of the Mamba Snakebite. Wilderness Environ. Med. 1996, 7, 133–145. [Google Scholar] [CrossRef]
- Blanchet, G.; Collet, G.; Mourier, G.; Gilles, N.; Fruchart-Gaillard, C.; Marcon, E.; Servent, D. Polypharmacology Profiles and Phylogenetic Analysis of Three-Finger Toxins from Mamba Venom: Case of Aminergic Toxins. Biochimie 2014, 103, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Laustsen, A.H.; Lomonte, B.; Lohse, B.; Fernández, J.; Gutiérrez, J.M. Unveiling the Nature of Black Mamba (Dendroaspis polylepis) Venom through Venomics and Antivenom Immunoprofiling: Identification of Key Toxin Targets for Antivenom Development. J. Proteom. 2015, 119, 126–142. [Google Scholar] [CrossRef] [PubMed]
- Casasola, A.; Ramos-Cerrillo, B.; de Roodt, A.R.; Carbajal Saucedo, A.; Chippaux, J.-P.; Alagón, A.; Stock, R.P. Paraspecific Neutralization of the Venom of African Species of Cobra by an Equine Antiserum against Naja Melanoleuca: A Comparative Study. Toxicon 2009, 53, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.F.; Layfield, H.J.; Vallance, T.; Patel, K.; Bicknell, A.B.; Trim, S.A.; Vaiyapuri, S. The Urgent Need to Develop Novel Strategies for the Diagnosis and Treatment of Snakebites. Toxins 2019, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, S.; Petras, D.; Engmark, M.; Süssmuth, R.D.; Whiteley, G.; Albulescu, L.-O.; Kazandjian, T.D.; Wagstaff, S.C.; Rowley, P.; Wüster, W.; et al. The Medical Threat of Mamba Envenoming in Sub-Saharan Africa Revealed by Genus-Wide Analysis of Venom Composition, Toxicity and Antivenomics Profiling of Available Antivenoms. J. Proteom. 2018, 172, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Menzies, S.K.; Litschka-Koen, T.; Edge, R.J.; Alsolaiss, J.; Crittenden, E.; Hall, S.R.; Westhorpe, A.; Thomas, B.; Murray, J.; Shongwe, N.; et al. Two Snakebite Antivenoms Have Potential to Reduce Eswatini’s Dependency upon a Single, Increasingly Unavailable Product: Results of Preclinical Efficacy Testing. PLoS Negl. Trop. Dis. 2022, 16, e0010496. [Google Scholar] [CrossRef] [PubMed]
- Resiere, D.; Arias, A.S.; Villalta, M.; Rucavado, A.; Brouste, Y.; Cabié, A.; Névière, R.; Césaire, R.; Kallel, H.; Mégarbane, B.; et al. Preclinical Evaluation of the Neutralizing Ability of a Monospecific Antivenom for the Treatment of Envenomings by Bothrops lanceolatus in Martinique. Toxicon 2018, 148, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Maduwage, K.; Isbister, G.K.; Silva, A.; Bowatta, S.; Mendis, S.; Gawarammana, I. Epidemiology and Clinical Effects of Hump-Nosed Pit Viper (Genus: Hypnale) Envenoming in Sri Lanka. Toxicon 2013, 61, 11–15. [Google Scholar] [CrossRef]
- Selvanayagam, Z.E.; Gopalakrishnakone, P. Tests for Detection of Snake Venoms, Toxins and Venom Antibodies: Review on Recent Trends (1987–1997). Toxicon 1999, 37, 565–586. [Google Scholar] [CrossRef] [PubMed]
- Kulawickrama, S.; O’Leary, M.A.; Hodgson, W.C.; Brown, S.G.A.; Jacoby, T.; Davern, K.; Isbister, G.K. Development of a Sensitive Enzyme Immunoassay for Measuring Taipan Venom in Serum. Toxicon 2010, 55, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Ooms, G.I.; van Oirschot, J.; Waldmann, B.; Okemo, D.; Mantel-Teeuwisse, A.K.; van den Ham, H.A.; Reed, T. The Burden of Snakebite in Rural Communities in Kenya: A Household Survey. Am. J. Trop. Med. Hyg. 2021, 105, 828–836. [Google Scholar] [CrossRef]
- Kularatne, S.A.; Sivansuthan, S.; Medagedara, S.; Maduwage, K.; de Silva, A. Revisiting Saw-Scaled Viper (Echis carinatus) Bites in the Jaffna Peninsula of Sri Lanka: Distribution, Epidemiology and Clinical Manifestations. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 591–597. [Google Scholar] [CrossRef]
- Rathnayaka, R.M.M.N.; Ranathunga, P.E.N.; Kularatne, S.A. Kidney Injury Following Envenoming by Hump-Nosed Pit Viper (Genus: Hypnale) in Sri Lanka: Proven and Probable Cases. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 131–142. [Google Scholar] [CrossRef] [PubMed]
Inhibitor Concentration (µg/mL) | Dendroaspis jamesoni | Dendroaspis angusticeps | Bitis arietans | Naja ashei | ||||
---|---|---|---|---|---|---|---|---|
OD | % Inhibition | OD | % Inhibition | OD | % Inhibition | OD | % Inhibition | |
6.600 | 0.065 | 89.31 | 0.092 | 86.82 | 0.166 | 18.62 | 0.179 | 18.63 |
2.200 | 0.079 | 87.01 | 0.105 | 84.96 | 0.172 | 15.68 | 0.182 | 17.27 |
0.730 | 0.094 | 84.54 | 0.086 | 87.68 | 0.170 | 16.67 | 0.181 | 17.73 |
0.240 | 0.183 | 69.90 | 0.196 | 71.92 | 0.173 | 15.19 | 0.187 | 15.00 |
0.081 | 0.195 | 67.93 | 0.208 | 70.20 | 0.175 | 14.21 | 0.193 | 12.27 |
0.027 | 0.207 | 65.95 | 0.210 | 69.91 | 0.181 | 11.27 | 0.187 | 15.00 |
0.009 | 0.214 | 64.80 | 0.238 | 65.90 | 0.190 | 6.86 | 0.198 | 10.00 |
0.003 | 0.306 | 49.67 | 0.330 | 52.72 | 0.193 | 5.39 | 0.213 | 3.18 |
NAC | 0.608 | 0.698 | 0.204 | 0.220 |
Percent (%) Inhibition for ELSIA Sensitivity Determination | ||||
---|---|---|---|---|
Dendroaspis polylepis Venom | Negative Controls (n = 16) | |||
Concentration (µg/mL) | Replicate 1 | Replicate 2 | ||
44.00 | 76.00 | 80.61 | 50.06 | 48.28 |
14.67 | 68.85 | 72.65 | 47.08 | 46.95 |
4.89 | 67.06 | 65.51 | 44.97 | 44.70 |
1.63 | 65.87 | 59.79 | 42.58 | 44.10 |
0.54 | 64.88 | 57.96 | 34.77 | 37.02 |
0.18 | 50.20 | 54.49 | 32.18 | 34.44 |
0.06 | 42.06 | 50.82 | 20.46 | 21.39 |
0.02 | 39.08 | 45.92 | 12.58 | 11.26 |
Inhibitor Concentration (µg/mL) | OD (492 nm) | Percent Inhibition (%) |
---|---|---|
44.00 | 0.538 | 72.66 |
14.67 | 0.640 | 67.48 |
4.89 | 0.737 | 62.55 |
1.63 | 0.876 | 55.49 |
0.54 | 0.971 | 50.66 |
0.18 | 1.057 | 46.29 |
0.06 | 1.258 | 36.07 |
0.02 | 1.382 | 29.78 |
NAC | 1.968 | - |
DF | Sum of Squares | Mean Square | |
---|---|---|---|
Model | 4 | 1.86281 | 0.4657 |
Error | 35 | 0.8709 | 0.02488 |
Total | 39 | 2.7337 | - |
F value | 18.7159 | ||
p value | <0.0001 | ||
p value summary | **** | ||
Significant difference among means (p < 0.05)? | Yes | ||
R-squared | 0.6814 |
Tukey’s Multiple Comparison Test | Adjusted p Value |
---|---|
D. jamesoni vs. D. angusticeps | 0.99829 |
D. jamesoni vs. B. arietans | 0.03341 |
D. angusticeps vs. B. arietans | 0.02264 |
N. ashei vs. D. jamesoni | 0.00206 |
N. ashei vs. D. angusticeps | 0.00132 |
B. arietans vs. N. ashei | 0.67821 |
B. arietans vs. D. polylepis | <0.0001 |
D. polylepis vs. D. jamesoni | 0.34015 |
D. polylepis vs. D. angusticeps | 0.09557 |
D. polylepis vs. N. ashei | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kpordze, S.W.; Kikuvi, G.M.; Kimotho, J.H.; Mobegi, V.A. Development, Optimization and Evaluation of a Sensitive Enzyme-Linked Immunosorbent Assay (ELISA) Prototype for Detection of Chicken-Based IgY Polyclonal Antibodies against Toxins of D. polylepis Venom. Antibodies 2024, 13, 50. https://doi.org/10.3390/antib13030050
Kpordze SW, Kikuvi GM, Kimotho JH, Mobegi VA. Development, Optimization and Evaluation of a Sensitive Enzyme-Linked Immunosorbent Assay (ELISA) Prototype for Detection of Chicken-Based IgY Polyclonal Antibodies against Toxins of D. polylepis Venom. Antibodies. 2024; 13(3):50. https://doi.org/10.3390/antib13030050
Chicago/Turabian StyleKpordze, Stephen Wilson, Gideon Mutie Kikuvi, James Hungo Kimotho, and Victor Atunga Mobegi. 2024. "Development, Optimization and Evaluation of a Sensitive Enzyme-Linked Immunosorbent Assay (ELISA) Prototype for Detection of Chicken-Based IgY Polyclonal Antibodies against Toxins of D. polylepis Venom" Antibodies 13, no. 3: 50. https://doi.org/10.3390/antib13030050
APA StyleKpordze, S. W., Kikuvi, G. M., Kimotho, J. H., & Mobegi, V. A. (2024). Development, Optimization and Evaluation of a Sensitive Enzyme-Linked Immunosorbent Assay (ELISA) Prototype for Detection of Chicken-Based IgY Polyclonal Antibodies against Toxins of D. polylepis Venom. Antibodies, 13(3), 50. https://doi.org/10.3390/antib13030050