The Role of Bispecific Antibodies in Relapsed Refractory Multiple Myeloma: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, D.D.; Mink, P.J.; Adami, H.O.; Cole, P.; Mandel, J.S.; Oken, M.M.; Trichopoulos, D. Multiple myeloma: A review of the epidemiologic literature. Int. J. Cancer 2007, 120 (Suppl. 12), 40–61. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Myeloma. Available online: https://seer.cancer.gov/statfacts/html/mulmy.html (accessed on 7 March 2023).
- Moreau, P.; Kumar, S.K.; San Miguel, J.; Davies, F.; Zamagni, E.; Bahlis, N.; Ludwig, H.; Mikhael, J.; Terpos, E.; Schjesvold, F.; et al. Treatment of relapsed and refractory multiple myeloma: Recommendations from the International Myeloma Working Group. Lancet Oncol. 2021, 22, e105–e118. [Google Scholar] [CrossRef] [PubMed]
- Podar, K.; Leleu, X. Relapsed/Refractory Multiple Myeloma in 2020/2021 and Beyond. Cancers 2021, 13, 5154. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.C.; Kyle, R.A.; Rajkumar, S.V.; Stewart, A.K.; Weber, D.; Richardson, P.; ASHTM/FDA Panel on Clinical Endpoints in Multiple Myeloma. Clinically relevant end points and new drug approvals for myeloma. Leukemia 2007, 22, 231–239. [Google Scholar] [CrossRef]
- Richardson, P.G.; Barlogie, B.; Berenson, J.; Singhal, S.; Jagannath, S.; Irwin, D.; Rajkumar, S.V.; Srkalovic, G.; Alsina, M.; Alexanian, R.; et al. A Phase 2 Study of Bortezomib in Relapsed, Refractory Myeloma. N. Engl. J. Med. 2003, 348, 2609–2617. [Google Scholar] [CrossRef]
- Gandhi, U.H.; Cornell, R.F.; Lakshman, A.; Gahvari, Z.J.; McGehee, E.; Jagosky, M.H.; Gupta, R.; Varnado, W.; Fiala, M.A.; Chhabra, S.; et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 2019, 33, 2266–2275. [Google Scholar] [CrossRef]
- Tai, Y.-T.; Anderson, K.C. B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma. Expert Opin. Biol. Ther. 2019, 19, 1143–1156. [Google Scholar] [CrossRef]
- FDA Approves Idecabtagene Vicleucel for Multiple Myeloma. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-idecabtagene-vicleucel-multiple-myeloma (accessed on 11 March 2023).
- FDA Approves Ciltacabtagene Autoleucel for Relapsed or Refractory Multiple Myeloma. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ciltacabtagene-autoleucel-relapsed-or-refractory-multiple-myeloma (accessed on 11 March 2023).
- Wang, Q.; Chen, Y.; Park, J.; Liu, X.; Hu, Y.; Wang, T.; McFarland, K.; Betenbaugh, M.J. Design and Production of Bispecific Antibodies. Antibodies 2019, 8, 43. [Google Scholar] [CrossRef]
- Shah, Z.; Malik, M.N.; Batool, S.S.; Kotapati, S.; Akhtar, A.; Rehman, O.U.; Ghani, M.; Sadiq, M.; Akbar, A.; Ashraf, A.; et al. Bispecific T-Cell Engager (BiTE) Antibody Based Immunotherapy for Treatment of Relapsed Refractory Multiple Myeloma (RRMM): A Systematic Review of Preclinical and Clinical Trials. Blood 2019, 134 (Suppl. 1), 5567. [Google Scholar] [CrossRef]
- Wudhikarn, K.; Wills, B.; Lesokhin, A.M. Monoclonal antibodies in multiple myeloma: Current and emerging targets and mechanisms of action. Best Pract. Res. Clin. Haematol. 2020, 33, 101143. [Google Scholar] [CrossRef]
- Hoyos, V.; Borrello, I. The immunotherapy era of myeloma: Monoclonal antibodies, vaccines, and adoptive T-cell therapies. Blood 2016, 128, 1679–1687. [Google Scholar] [CrossRef]
- Hosny, M.; Verkleij, C.P.M.; van der Schans, J.; Frerichs, K.A.; Mutis, T.; Zweegman, S.; van de Donk, N.W.C.J. Current State of the Art and Prospects of T Cell-Redirecting Bispecific Antibodies in Multiple Myeloma. J. Clin. Med. 2021, 10, 4593. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Chen, D.; Zong, Y.; Ye, S.; Tang, J.; Meng, H.; An, G.; Zhang, X.; Yang, L. Immunotherapy based on bispecific T-cell engager with hIgG 1 Fc sequence as a new therapeutic strategy in multiple myeloma. Cancer Sci. 2015, 106, 512–521. [Google Scholar] [CrossRef]
- Appleman, L.J.; Boussiotis, V.A. T cell anergy and costimulation. Immunol. Rev. 2003, 192, 161–180. [Google Scholar] [CrossRef]
- Caraccio, C.; Krishna, S.; Phillips, D.; Schürch, C.M. Bispecific Antibodies for Multiple Myeloma: A Review of Targets, Drugs, Clinical Trials, and Future Directions. Front. Immunol. 2020, 11, 501. [Google Scholar] [CrossRef]
- Touzeau, C.; Krishnan, A.Y.; Moreau, P.; Perrot, A.; Usmani, S.Z.; Manier, S.; Cavo, M.; Martinez-Chamorro, C.; Nooka, A.K.; Martin, T.G.; et al. Efficacy and safety of teclistamab (tec), a B-cell maturation antigen (BCMA) × CD3 bispecific antibody, in patients (pts) with relapsed/refractory multiple myeloma (RRMM) after exposure to other BCMA-targeted agents. J. Clin. Oncol. 2022, 40, 8013. [Google Scholar] [CrossRef]
- Martínez-López, J.; Moreau, P.; Usmani, S.Z.; Garfall, A.; van de Donk, N.W.; San-Miguel, J.F.; Oriol, A.; Chari, A.; Karlin, L.; Mateos, M.V.; et al. Updated Efficacy and Safety Results of Teclistamab, A B-Cell Maturation Antigen × CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Multiple Myeloma from Majestec-1. HemaSphere 2022, 6, 1554–1555. [Google Scholar] [CrossRef]
- Rodriguez Otero, P.; D’Souza, A.; Reece, D. Teclistamab in Combination with Daratumumab, a Novel, Immunotherapy-Based Approach for the Treatment of Relapsed/Refractory Multiple Myeloma: Updated Phase 1B Results. HemaSphere 2022, 6, 184–185. [Google Scholar] [CrossRef]
- Searle, E.; Quach, H.; Wong, S.W.; Costa, L.J.; Hulin, C.; Janowski, W.; Berdeja, J.; Anguille, S.; Matous, J.V.; Touzeau, C.; et al. Teclistamab in Combination with Subcutaneous Daratumumab and Lenalidomide in Patients with Multiple Myeloma: Results from One Cohort of MajesTEC-2, a Phase1b, Multicohort Study. Blood 2022, 140 (Suppl. 1), 394–396. [Google Scholar] [CrossRef]
- Raje, N.; Bahlis, N.J.; Costello, C.; Dholaria, B.; Solh, M.; Levy, M.Y.; Tomasson, M.H.; Damore, M.A.; Jiang, S.; Basu, C.; et al. Elranatamab, a BCMA Targeted T-Cell Engaging Bispecific Antibody, Induces Durable Clinical and Molecular Responses for Patients with Relapsed or Refractory Multiple Myeloma. Blood 2022, 140 (Suppl. 1), 388–390. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Tomasson, M.H.; Mohty, M.; Niesvizky, R.; Nooka, A.K.; Manier, S.; Maisel, C.; Jethava, Y.; Martinez-Lopez, J.; Prince, H.M.; et al. Efficacy and Safety of Elranatamab in Patients with Relapsed/Refractory Multiple Myeloma Naïve to B-Cell Maturation Antigen (BCMA)-Directed Therapies: Results from Cohort a of the Magnetismm-3 Study. Blood 2022, 140 (Suppl. 1), 391–393. [Google Scholar] [CrossRef]
- Grosicki, S.; Mellqvist, U.-H.; Pruchniewski, Ł.; Crafoord, J.; Trudel, S.; Min, C.-K.; White, D.; Alegre, A.; Hansson, M.; Ikeda, T.; et al. Elranatamab in Combination with Daratumumab for Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from the Phase 3 Magnetismm-5 Study Safety Lead-in Cohort. Blood 2022, 140 (Suppl. 1), 4407–4408. [Google Scholar] [CrossRef]
- Harrison, S.J.; Minnema, M.C.; Lee, H.C.; Spencer, A.; Kapoor, P.; Madduri, D.; Larsen, J.; Ailawadhi, S.; Kaufman, J.L.; Raab, M.S.; et al. A Phase 1 First in Human (FIH) Study of AMG 701, an Anti-B-Cell Maturation Antigen (BCMA) Half-Life Extended (HLE) BiTE® (bispecific T-cell engager) Molecule, in Relapsed/Refractory (RR) Multiple Myeloma (MM). Blood 2020, 136 (Suppl. 1), 28–29. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti–B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef]
- Plesner, T.; Harrison, S.J.; Quach, H.; Lee, C.H.; Bryant, A.; Vangsted, A.J.; Estell, J.; Delforge, M.; Offner, F.; Twomey, P.; et al. A Phase I Study of RO7297089, a B-Cell Maturation Antigen (BCMA)-CD16a Bispecific Antibody in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2021, 138, 2755. [Google Scholar] [CrossRef]
- D’Souza, A.; Shah, N.; Rodriguez, C.; Voorhees, P.M.; Weisel, K.; Bueno, O.F.; Pothacamury, R.K.; Freise, K.J.; Yue, S.; Ross, J.A.; et al. A Phase I First-in-Human Study of ABBV-383, a B-Cell Maturation Antigen × CD3 Bispecific T-Cell Redirecting Antibody, in Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2022, 40, 3576–3586. [Google Scholar] [CrossRef] [PubMed]
- Bumma, N.; Richter, J.; Brayer, J.; Zonder, J.A.; Dhodapkar, M.; Shah, M.R.; Hoffman, J.E.; Mawad, R.; Maly, J.J.; Lentzsch, S.; et al. Updated Safety and Efficacy of REGN5458, a BCMAxCD3 Bispecific Antibody, Treatment for Relapsed/Refractory Multiple Myeloma: A Phase 1/2 First-in-Human Study. Blood 2022, 140, 10140–10141. [Google Scholar] [CrossRef]
- Raab, M.S.; Cohen, Y.C.; Schjesvold, F.; Aardalen, K.; Oka, A.; Spencer, A.; Wermke, M.; Hari, P.; Kaufman, J.L.; Cafro, A.M.; et al. Preclinical Discovery and Early Findings from the Phase 1, Dose-Escalation Study of WVT078, A Bcma-CD3 Bispecific Antibody, in Patients with R/R Multiple Myeloma. HemaSphere 2022, 6, 1586–1587. [Google Scholar] [CrossRef]
- Chari, A.; Touzeau, C.; Schinke, C.; Minnema, M.C.; Berdeja, J.; Oriol, A.; Van De Donk, N.W.; Otero, P.R.; Askari, E.; Mateos, M.-V.; et al. Talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D × CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Multiple Myeloma (RRMM): Phase 1/2 Results from MonumenTAL-1. Blood 2022, 140 (Suppl. 1), 384–387. [Google Scholar] [CrossRef]
- Van de Donk, N.W.; Bahlis, N.; Mateos, M.V.; Weisel, K.; Dholaria, B.; Garfall, A.L.; Goldschmidt, H.; Martin, T.G.; Morillo, D.; Reece, D.E.; et al. Novel Combination Immunotherapy for the Treatment of Relapsed/Refractory Multiple Myeloma: Updated Phase 1B Results for Talquetamab (A GPRC5D X CD3 Bispecific Antibody) in Combination with daratumumab. HemaSphere 2022, 6, 174–175. [Google Scholar] [CrossRef]
- Carlo-Stella, C.; Mazza, R.; Manier, S.; Facon, T.; Yoon, S.-S.; Koh, Y.; Harrison, S.J.; Er, J.; Pinto, A.; Volzone, F.; et al. RG6234, a GPRC5DxCD3 T-Cell Engaging Bispecific Antibody, Is Highly Active in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated Intravenous (IV) and First Subcutaneous (SC) Results from a Phase I Dose-Escalation Study. Blood 2022, 140 (Suppl. 1), 397–399. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Richter, J.; Trudel, S.; Cohen, A.D.; Spencer, A.; Forsberg, P.A.; Laubach, J.P.; Thomas, S.K.; Bahlis, N.J.; Costa, L.J.; et al. Enduring Responses after 1-Year, Fixed-Duration Cevostamab Therapy in Patients with Relapsed/Refractory Multiple Myeloma: Early Experience from a Phase I Study. Blood 2022, 140 (Suppl. 1), 4415–4417. [Google Scholar] [CrossRef]
- Mohan, S.R.; Chase, C.C.; Berdeja, J.G.; Karlin, L.; Belhadj, K.; Perrot, A.; Moreau, P.; Touzeau, C.; Chalopin, T.; Lesokhin, A.M.; et al. Initial Results of Dose Escalation of ISB 1342, a Novel CD3xCD38 Bispecific Antibody, in Patients with Relapsed / Refractory Multiple Myeloma (RRMM). Blood 2022, 140 (Suppl. 1), 7264–7266. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute. Study Quality Assessment Tools. Quality Assessment of Systematic Review and Meta-Analyses. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 7 March 2023).
- Giannakoulas, N.; Ntanasis-Stathopoulos, I.; Terpos, E. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. Int. J. Mol. Sci. 2021, 22, 4462. [Google Scholar] [CrossRef]
- Cho, S.-F.; Anderson, K.C.; Tai, Y.-T. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front. Immunol. 2018, 9, 1821. [Google Scholar] [CrossRef]
- Riley, C.H.; Hutchings, M.; Yoon, S.S.; Koh, Y.; Manier, S.; Facon, T.; Harrison, S.J.; Er, J.; Volzone, F.; Pinto, A.; et al. RG6234, A Novel GPRC5D T-Cell Engaging Bispecific Antibody, Induces Rapid Responses in Patients with Relapsed/Refractory Multiple Myeloma: Preliminary Results from a First-Inhuman Trial. HemaSphere 2022, 6, 168–169. [Google Scholar]
- Stefano, S.; Grandclement, C.; Dehilly, E.; Panagopoulou, M.; Martini, E.; Castillo, R.; Suere, P.; Pouleau, B.; Estoppey, C.; Frei, J.; et al. ISB 1442, a First-in-Class CD38 and CD47 Bispecific Antibody Innate Cell Modulator for the Treatment of Relapsed Refractory Multiple Myeloma. Blood 2021, 138 (Suppl. 1), 73. [Google Scholar] [CrossRef]
- Phase 1/2 Study of ISB 1442 in Relapsed/Refractory Multiple Myeloma. Available online: https://clinicaltrials.gov/ct2/show/NCT05427812 (accessed on 7 March 2023).
- Wu, L.; Seung, E.; Xu, L.; Rao, E.; Lord, D.M.; Wei, R.R.; Cortez-Retamozo, V.; Ospina, B.; Posternak, V.; Ulinski, G.; et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat. Cancer 2019, 1, 86–98. [Google Scholar] [CrossRef]
- Vrohlings, M.; Müller, J.; Jungmichel, S.; Senn, D.; Howald, A.B.; Schleier, T.; Scheifele, F.; Wendelspiess, S.; Richle, P.; Merten, H.; et al. Preclinical Assessment of CDR101—A BCMAxCD3xPD-L1 Trispecific Antibody with Superior Anti-Tumor Efficacy. Blood 2021, 138 (Suppl. 1), 1583. [Google Scholar] [CrossRef]
- First-in-human Single Agent Study of SAR442257 in RRMM and RR-NHL. Available online: https://clinicaltrials.gov/ct2/show/NCT04401020 (accessed on 7 March 2023).
- A Phase 1 Open-label, Multicenter, Dose Escalation Study of the Safety, Tolerability, and PK of HPN217 in Patients with R/R MM. Available online: https://clinicaltrials.gov/ct2/show/NCT04184050 (accessed on 7 March 2023).
Agent Name | Target | Author, Year | Clinical Trial | Evaluable Patients/Sample Size | Median Age | Male Sex, % | Median Line of Treatment |
---|---|---|---|---|---|---|---|
Teclistamab [19] | BCMA-CD3 | Touzeau et al., 2022 | NCT04557098 | 38 | 63.5 | 63% | 6 |
Teclistamab [20] | BCMA-CD3 | Martinez-Lopez et al., 2022 | NCT03145181 | 165 | 64 | 58% | 5 |
Teclistamab+ Daratumumab [21] | BCMA-CD3+ anti-CD38 | Otero et al., 2022 | NCT04108195 | 46 | 67 | 48% | 6 |
Teclistamab + Daratumumab + Lenalidomide [22] | BCMA-CD3+ anti-CD38+ IMiD | Searle at al., 2022 | NCT04722146 | 32 | 62 | 87.5% | 2 |
Elranatamab [23] | BCMA-CD3 | Raje et al., 2022 | NCT03269136 | 55 | 64 | NR | 5 |
Elranatamab [24] | BCMA-CD3 | Bahlis et al., 2022 | NCT04649359 | 123 | 68 | 55.3% | 5 |
Elranatamab + Daratumumab [25] | BCMA-CD3+ anti-CD38 | Grosicki et al., 2022 | NCT05020236 | 28 | 68 | NR | 5 |
Pavuratamab (AMG-701) [26] | BCMA-CD3 | Harrison et al., 2020 | NCT03287908 | 75 | 63 | NR | 6 |
Pacanalotamab (AMG-420) [27] | BCMA-CD3 | Topp et al., 2022 | NCT02514239 | 42 | 65 | 64% | 7 |
RO7297089 [28] | BCMA-CD16a | Plesner et al., 2021 | NCT04434469 | 21 | 63 | NR | 8 |
ABBV-383 [29] | BCMA-CD3 | D’Souza et al., 2022 | NCT03933735 | 124 | 68 | 55% | 5 |
REGN5458 [30] | BCMA-CD3 | Bumma et al., 2022 | NCT03761108 | 167 | 64 | 49% | 6 |
WVT078 [31] | BCMA-CD3 | Raab et al., 2022 | NCT04123418 | 33 | NR | NR | 2 |
Talquetamab [32] | GPRC5D-CD3 | Chari et al., 2022 | NCT03399799/ NCT04634552 | 143 | 67 | NR | 5 |
Talquetamab+ Daratumumab [33] | GPRC5D-CD3+ anti-CD38 | Donk et al., 2022 | NCT04108195 | 46 | 65 | 52% | 5 |
RG6234 [34] | GPRC5D-CD3 | Carlo-Stella et al., 2022 | NCT04557150 | C1: 51 C2: 54 | C1: 62 C2: 64 | NR | C1:5 C2:4 |
Cevostamab [35] | FcRH5-CD3 | Lesokhin et al., 2022 | NCT03275103 | 16 | 66.5 | NR | 6 |
ISB 1342 [36] | CD38-CD3 | Mohan et al., 2022 | NCT03309111 | 24 | 67 | 63% | 6 |
Agent Name | Phase of Study | MFU, Months | ORR % (N) | CR/sCR, % (N) | VGPR | PR | PD | SD | DOR, Months |
---|---|---|---|---|---|---|---|---|---|
BCMA agents | |||||||||
Teclistamab [19] | Phase I/II | 6.9 | 40% (10/25) | 20% (5/25) | NR | NR | NR | NR | NR * |
Teclistamab [20] | Phase I/II | NR | 64% (105/165) | 30% (50/165) | NR | NR | NR | NR | NR * |
Teclistamab + Daratumumab [21] | Phase Ib | 7.2 | 78% (29/37) | 24% (9/37) | 73% (27/37) | NR | NR | NR | NR * |
Teclistamab + Daratumumab + Lenalidomide [22] | Phase Ib | variable | C1: 100% (13/13) C2: 81% (13/16) | NR | C1: 92% (12/13) C2: NR | NR | NR | NR | NR |
Elranatamab [23] | Phase I | 12 | 64% (35/55) | 38% (21/55) | 56% (31/55) | NR | NR | NR | 17.1 |
Elranatamab [24] | Phase II | 6.8 | 61% (75/123) | NR | NR | NR | 33% (40/123) | NR | NR * |
Elranatamab + Daratumumab [25] | Phase III | NR | NR | NR | NR | NR | NR | NR | NR |
Pavuratamab (AMG-701) [26] | Phase I | 1.7 | 25% (17/69) | 7% (5/69) | 9% (6/69) | 9% (6/69) | NR | NR | 3.8 |
Pacanalotamab (AMG-420) [27] | Phase I | NR | 31% (13/42) | 21% (9/42) | 5% (2/42) | 5% (2/42) | 60% (25/42) | NR | NR |
RO7297089 [28] | Phase I | NR | NR | NR | NR | 6% (1/18) | 57% (12/21) | 56% (10/18) | NR |
ABBV-383 [29] | Phase I | 10.8 | 57% (69/122) | 29% (35/122) | 14% (17/122) | 14% (17/122) | 12% (15/122) | 30% (36/122) | NR * |
REGN5458 [30] | Phase I/II | NR | 52% (38/73) | 38% (27/73) | NR | NR | NR | NR | NR * |
WVT078 [31] | Phase I | NR | 35% (9/26) | 12% (3/26) | NR | NR | 67% (22/33) | NR | NR |
Non-BCMA agents | |||||||||
Talquetamab [32] | Phase I/II | 11 | 73% (104/143) | 29% (41/143) | 58% (83/143) | NR | NR | NR | 9.3 |
Talquetamab+ Daratumumab [33] | Phase Ib | 4 | 77% (26/34) | 29% (10/34) | 65% (22/34) | NR | NR | NR | NR * |
RG6234 [34] | Phase I | C1: 7.1 C2: 3.9 | C1: 71% (35/49) C2: 60% (29/48) | C1: 29% (14/49) C2: 19% (9/48) | C1: 29% (14/49) C2: 21% (10/48) | C1: 14% (7/49) C2: 21% (10/48) | NR | NR | C1: 12.9 C2: 8.8 |
Cevostamab [35] | Phase I | NR | 100% (16/16) | 63% (10/16) | 31% (5/16) | 6% (1/16) | 19% (3/16) | NR | NR |
ISB 1342 [36] | Phase I | NR | NR | NR | NR | NR | NR | NR | NR |
Agent | ORR | CR/sCR | VGPR | PR |
---|---|---|---|---|
Cevostamab [35] | 100% | 63% | 31% | 6% |
Teclistamab + Daratumumab + Lenalidomide [22] | C1: 100% C2: 81% | NR | C1: 92% C2: NR | NR |
Teclistamab + Daratumumab [21] | 78% | 24% | 73% | NR |
Talquetamab + Daratumumab [33] | 77% | 29% | 65% | NR |
Talquetamab [32] | 73% | 29% | 58% | NR |
RG6234 [34] | C1: 71% C2: 60% | C1: 29% C2: 19% | C1: 29% C2: 21% | C1: 14% C2: 21% |
Elranatamab [23] | 64% | 38% | 56% | NR |
Teclistamab [20] | 64% | 30% | NR | NR |
Elranatamab [24] | 61% | NR | NR | NR |
ABBV-383 [29] | 57% | 29% | 14% | 14% |
REGN5458 [30] | 52% | 38% | NR | NR |
Teclistamab [19] | 40% | 20% | NR | NR |
WVT078 [31] | 35% | 12% | NR | NR |
Pacanalotamab (AMG-420) [27] | 31% | 21% | 5% | 5% |
Pavuratamb (AMG-701) [26] | 25% | 7% | 9% | 9% |
Agent Name | CRS | Fever | Neurotoxicity/ICANS | Infusion Related Reactions | Overall Infection | Anemia | Neutropenia |
---|---|---|---|---|---|---|---|
Teclistamab [19] | 63% | NR | 3% | NR | 42% | 39% | 55% |
Teclistamab [20] | 72% | NR | 6% | NR | 63% | 50% | 65% |
Teclistamab + Daratumumab [21] | 61% | NR | 2% | NR | 63% | 46% | 54% |
Teclistamab + Daratumumab + Lenalidomide [22] | 81% | 25% | 0 | NR | 75% | NR | 75% |
Elranatamab [23] | 67% | NR | NR | NR | NR | NR | NR |
Elranatamab [24] | 58% | 22% | 3% | 24% | 62% | 46% | 43% |
Elranatamab + Daratumumab [25] | 50% | 21% | 0 | NR | NR | NR | 29% |
Pavuratamab (AMG-701) [26] | 61% | 25% | 8% | NR | NR | 43% | 23% |
Pacanalotamab (AMG-420) [27] | 38% | NR | 5% | NR | 33% | NR | NR |
RO7297089 [28] | NR | NR | NR | 48% | NR | 52% | NR |
ABBV-383 [29] | 57% | 19% | NR | NR | NR | 29% | 37% |
REGN5458 [30] | 48% | NR | NR | NR | NR | 37% | 29% |
WVT078 [31] | 61% | 39% | NR | NR | NR | 24% | 12% |
Talquetamab [32] | 79% | NR | NR | NR | 57% | 45% | 34% |
Talquetamab + Daratumumab [33] | 65% | NR | 4% | NR | 50% | 39% | NR |
RG6234 [34] | C1: 82% C2: 78% | NR | 9% | NR | C1: 57% C2: 37% | C1: 14% C2: 5% | C1: 12% C2: 17% |
Cevostamab [35] | NR | NR | NR | NR | 13% | NR | NR |
ISB 1342 [36] | 17% | 8% | NR | 42% | NR | 21% | NR |
Agent Name | Lymphopenia | Thrombocytopenia | Transaminitis | Diarrhea | Fatigue | Death | Treatment Discontinuation |
---|---|---|---|---|---|---|---|
Teclistamab [19] | 40% | 42% | NR | NR | NR | NR | NR |
Teclistamab [20] | 34% | 38% | NR | NR | NR | NR | NR |
Teclistamab + Daratumumab [21] | NR | 33% | NR | 33% | NR | NR | NR |
Teclistamab + Daratumumab + Lenalidomide [22] | NR | NR | NR | 38% | 44% | 3.1% | 3.1% |
Elranatamab [24] | 26% | 27% | NR | 37% | 33% | 13.8% | NR |
Elranatamab + Daratumumab [25] | NR | NR | NR | NR | NR | NR | 0 |
Pavuratamab (AMG-701) [26] | NR | 20% | NR | 31% | 25% | 5% | NR |
Pacanalotamab (AMG-420) [27] | NR | NR | 12% | NR | NR | 10% | 95% |
RO7297089 [28] | NR | 19% | 19% | NR | NR | 19% | 71% |
ABBV-383 [29] | 15% | 23% | NR | 27% | 30% | 27% | 64% |
REGN5458 [30] | NR | 21% | NR | NR | 34% | NR | 3% |
WVT078 [31] | 18% | NR | 30% | NR | NR | NR | 76% |
Talquetamab [32] | NR | 27% | NR | NR | NR | 0.7% | 4.9% |
Talquetamab + Daratumumab [33] | NR | 35% | NR | NR | NR | NR | 7% |
RG6234 [34] | NR | C1: 14% C2: 19% | NR | NR | NR | C1: NR C2: 1.9% | C1: 3.9% C2: 3.7% |
ISB 1342 [36] | 8% | 17% | NR | 13% | 8% | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanam, R.; Ashruf, O.S.; Waqar, S.H.B.; Shah, Z.; Batool, S.; Mehreen, R.; Pachika, P.; Roksana, Z.; Rehman, M.E.U.; Anwer, F. The Role of Bispecific Antibodies in Relapsed Refractory Multiple Myeloma: A Systematic Review. Antibodies 2023, 12, 38. https://doi.org/10.3390/antib12020038
Khanam R, Ashruf OS, Waqar SHB, Shah Z, Batool S, Mehreen R, Pachika P, Roksana Z, Rehman MEU, Anwer F. The Role of Bispecific Antibodies in Relapsed Refractory Multiple Myeloma: A Systematic Review. Antibodies. 2023; 12(2):38. https://doi.org/10.3390/antib12020038
Chicago/Turabian StyleKhanam, Razwana, Omer S. Ashruf, Syed Hamza Bin Waqar, Zunairah Shah, Saba Batool, Rameesha Mehreen, Pranali Pachika, Zinath Roksana, Mohammad Ebad Ur Rehman, and Faiz Anwer. 2023. "The Role of Bispecific Antibodies in Relapsed Refractory Multiple Myeloma: A Systematic Review" Antibodies 12, no. 2: 38. https://doi.org/10.3390/antib12020038
APA StyleKhanam, R., Ashruf, O. S., Waqar, S. H. B., Shah, Z., Batool, S., Mehreen, R., Pachika, P., Roksana, Z., Rehman, M. E. U., & Anwer, F. (2023). The Role of Bispecific Antibodies in Relapsed Refractory Multiple Myeloma: A Systematic Review. Antibodies, 12(2), 38. https://doi.org/10.3390/antib12020038