Analyses of Land Cover Change Trajectories Leading to Tropical Forest Loss: Illustrated for the West Kutai and Mahakam Ulu Districts, East Kalimantan, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Region
2.1.1. Social, Economic and Political Context
2.1.2. Land Allocation Zoning
2.2. Land Cover Maps and Expert Knowledge
2.3. Analyses to Quantify and Visualize Land Cover Change Processes and Trajectories
- (2a)
- The findings from the workshop with the experts (see Supplementary Materials S1) resulted in a schematic model of the main land cover change processes and trajectories that occurred between 2000 and 2009, showing which processes and trajectories were dominant and which land cover types were intermediate and/or stable for longer periods of time.
- (2b)
- Subsequently, the pixel-to-pixel cross tabulations based on the land cover maps resulted in land cover change matrices with on the vertical axis the initial land cover types and on the horizontal axis the land cover types of the subsequent time step. These land cover change matrices reflect the area of change (ha) in which a one-step trajectory occurred within the selected time period, namely 1990–2000, 2000–2009 and 1990–2009. However, the three decadal land cover maps could only show trajectories with a maximum of three stages per pixel. We have therefore included expert knowledge to understand the processes between the decadal land cover maps. Subsequently, the one-step trajectories that resulted from the quantified land cover change matrices were then translated into a schematic diagram, based on the schematic diagrams that resulted from the expert workshop.
3. Results
3.1. Quantification of Forest Loss and Land Development
3.2. Trajectory Analyses
3.2.1. Land Cover Change Processes and Trajectories Identified by Experts
- One-step trajectories of degradation and/or deforestation, for example, from closed forest to very open forest (i.e., degradation) or, for example, from forest to shrublands or grasslands (i.e., deforestation);
- Multiple-step trajectories of (i) deforestation to grasslands and (ii) subsequently conversion from grasslands to large-scale plantations. These trajectories involved, for example, land cover changes from forest to grasslands (i.e., deforestation) and further conversions to rubber or oil palm plantations;
- Multiple-step trajectories of (i) forest degradation and/or deforestation and conversion to small-scale mixed croplands, (ii) conversion after 1–2 years to smallholder rubber and (iii) in certain cases, further to monocultures, mostly oil palm. The time period to convert smallholder rubber to oil palm varied locally.
3.2.2. Quantification and Schematic Presentation of Land Cover Change Processes and Trajectories
3.3. Mapping of Land Cover Change Processes and Trajectories
3.4. Land Cover Change in Concessions and Land Allocation Zones
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Phalan, B.; Bertzky, M.; Butchart, S.H.M.; Donald, P.F.; Scharlemann, J.P.W.; Stattersfield, A.J.; Balmford, A. Crop expansion and conservation priorities in tropical countries. PLoS ONE 2013, 8, e51759. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, G.R.; Morton, D.C.; DeFries, R.S.; Olivier, J.G.J.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.; Randerson, J.T. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738. [Google Scholar] [CrossRef]
- Willemen, L.; Drakou, E.G.; Dunbar, M.B.; Mayaux, P.; Egoh, B.N. Safeguarding ecosystem services and livelihoods: Understanding the impact of conservation strategies on benefit flows to society. Ecosyst. Serv. 2013, 4, 95–103. [Google Scholar] [CrossRef]
- Barbier, E.B.; Burgess, J.C.; Grainger, A. The forest transition: Towards a more comprehensive theoretical framework. Land Use Policy 2010, 27, 98–107. [Google Scholar] [CrossRef]
- Rudel, T.K.; Defries, R.; Asner, G.P.; Laurance, W.F. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 2009, 23, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Ekadinata, A.; Dewi, S.; Nugroho, D.K. Land Cover Changes in Different Forest Transition Stages in Indonesia: East Kalimantan, Jambi and Lampung; World Agroforestry Centre—ICRAF, SEA Regional Office: Bogor, Indonesia, 2008. [Google Scholar]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Arunarwati, B.; Stolle, F.; Pittman, K. Quantifying changes in the rates of forest clearing in Indonesia from 1990 to 2005 using remotely sensed data sets. Environ. Res. Lett. 2009, 4, 034001. [Google Scholar] [CrossRef][Green Version]
- Austin, K.G.; Kasibhatla, P.S.; Urban, D.L.; Stolle, F.; Vincent, J. Reconciling Oil Palm Expansion and Climate Change Mitigation in Kalimantan, Indonesia. PLoS ONE 2015, 10, e0127963. [Google Scholar] [CrossRef] [PubMed]
- Langner, A.; Miettinen, J.; Siegert, F. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Chang. Biol. 2007, 13, 2329–2340. [Google Scholar] [CrossRef]
- Siegert, F.; Ruecker, G.; Hinrichs, A.; Hoffmann, A.A. Increased damage from fires in logged forests during droughts caused by El Niño. Nature 2001, 414, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwstadt, M.; Sheil, D. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. J. Ecol. 2005, 93, 191–201. [Google Scholar] [CrossRef][Green Version]
- Field, R.D.; van der Werf, G.R.; Fanin, T.; Fetzer, E.J.; Fuller, R.; Jethva, H.; Levy, R.; Livesey, N.J.; Luo, M.; Torres, O.; et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. USA 2016, 113, 9204–9209. [Google Scholar] [CrossRef] [PubMed]
- Benhin, J. Agriculture and deforestation in the tropics: a critical theoretical and empirical review. AMBIO A J. Hum. Environ. 2006, 35, 9–16. [Google Scholar] [CrossRef]
- Carlson, K.M.; Curran, L.M.; Ratnasari, D.; Pittman, A.M.; Soares-Filho, B.S.; Asner, G.P.; Trigg, S.N.; Gaveau, D.A.; Lawrence, D.; Rodrigues, H.O. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proc. Natl. Acad. Sci. USA 2012, 109, 7559–7564. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gaveau, D.L.A.; Kshatriya, M.; Sheil, D.; Sloan, S.; Molidena, E.; Wijaya, A.; Wich, S.; Ancrenaz, M.; Hansen, M.; Broich, M.; et al. Reconciling forest conservation and logging in Indonesian Borneo. PLoS ONE 2013, 8, e69887. [Google Scholar] [CrossRef] [PubMed]
- Gaveau, D.L.A.; Sloan, S.; Molidena, E.; Yaen, H.; Sheil, D.; Abram, N.K.; Ancrenaz, M.; Nasi, R.; Quinones, M.; Wielaard, N.; et al. Four Decades of Forest Persistence, Clearance and Logging on Borneo. PLoS ONE 2014, 9, e101654. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abood, S.A.; Lee, J.S.H.; Burivalova, Z.; Garcia-Ulloa, J.; Koh, L.P. Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia. Conserv. Lett. 2014, 1–10. [Google Scholar] [CrossRef]
- Mertens, B.; Lambin, E.F. Spatial modelling of deforestation in southern Cameroon. Appl. Geogr. 1997, 17, 143–162. [Google Scholar] [CrossRef]
- Brockhaus, M.; Obidzinski, K.; Dermawan, A.; Laumonier, Y.; Luttrell, C. An overview of forest and land allocation policies in Indonesia: Is the current framework sufficient to meet the needs of REDD+? For. Policy Econ. 2012, 18, 30–37. [Google Scholar] [CrossRef]
- Luttrell, C.; Resosudarmo, I.A.P.; Muharrom, E.; Brockhaus, M.; Seymour, F. The political context of REDD+ in Indonesia: Constituencies for change. Environ. Sci. Policy 2012, 1–9. [Google Scholar] [CrossRef]
- Mertens, B.; Lambin, E. Land-cover-change trajectories in southern Cameroon. Ann. Assoc. Am. Geogr. 2000, 90, 467–494. [Google Scholar] [CrossRef]
- Petit, C.; Scudder, T.; Lambin, E. Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia. Int. J. Remote Sens. 2001, 22, 3435–3456. [Google Scholar] [CrossRef]
- Ekadinata, A.; Vincent, G. Rubber Agroforests in a Changing Landscape: Analysis of Land Use/Cover Trajectories in Bungo District, Indonesia. For. Trees Livelihoods 2011, 20, 3–14. [Google Scholar] [CrossRef]
- Dennis, R.A.; Colfer, C.P. Impacts of land use and fire on the loss and degradation of lowland forest in 1983-2000 in East Kutai District, East Kalimantan, Indonesia. Singap. J. Trop. Geogr. 2006, 27, 30–48. [Google Scholar] [CrossRef]
- Inoue, M.; Kawai, M.; Imang, N. Implications of local peoples’ preferences in terms of income source and land use for Indonesia’s national REDD-plus policy: evidence in East Kalimantan, Indonesia. Int. J. Environ. Sustain. Dev. 2013, 12, 244–263. [Google Scholar] [CrossRef]
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Setiawan, Y.; Lubis, M.I.; Yusuf, S.M.; Prasetyo, L.B. Identifying Change Trajectory over the Sumatra’s Forestlands Using Moderate Image Resolution Imagery. Procedia Environ. Sci. 2015, 24, 189–198. [Google Scholar] [CrossRef]
- Broich, M.; Hansen, M.; Stolle, F.; Potapov, P.; Margono, B.A.; Adusei, B. Remotely sensed forest cover loss shows high spatial and temporal variation across Sumatera and Kalimantan, Indonesia 2000–2008. Environ. Res. Lett. 2011, 6, 1–9. [Google Scholar] [CrossRef]
- Broich, M.; Hansen, M.C.; Potapov, P.; Adusei, B.; Lindquist, E.; Stehman, S.V. Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 277–291. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Zhao, J.W.; Cheng, Q.; et al. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef][Green Version]
- Song, X.; Hansen, M.C.; Stephen, V.; Peter, V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018. [Google Scholar] [CrossRef] [PubMed]
- Casson, A. Decentralisation of Policies Affecting Forests and Estate Crops in Kutai Barat District, East Kalimantan; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2001. [Google Scholar]
- Van Nieuwstadt, M. The ecological consequences of logging in the burned forests of East Kalimantan, Indonesia. Conserv. Biol. 2001, 15, 1183–1186. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Hinrichs, A.; Siegert, F. Fire Damage in East Kalimantan in 1997/98 Related to Land Use and Vegetation Classes: Satellite Radar Inventory Results and Proposals for Further Actions; IFFM/SFMP GTZ: Bogor, Indonesia, 1999. [Google Scholar]
- Provinsi Kalimantan Timur Dalam Angka. In Kalimantan Timur Province in Figures; Badan Pusat Statistik: Central Jakarta, Indonesia, 2017; pp. 5, 63–75, 244, 245, 314, 333–337.
- Levang, P. People’s dependencies on forests. In Technical Report Phase I 1997-2001. ITTO PROJECT PD 12/97 REV.1 (F). Forest, Science and Sustainability: The Bulungan Model Forest; CIFOR/ITTO: Bogor, Indonesia, 2002; pp. 109–130. [Google Scholar]
- Casson, A.; Deddy Multastra, Y.I.K.; Obidzinski, K. Large-scale Plantations, Bioenergy Developments and Land Use Change in Indonesia; CIFOR Working Paper No. 170; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2014; ISBN 978-602-1504-66-6. [Google Scholar]
- Casson, A.; Obidzinski, K. From New Order to Regional Autonomy: Shifting Dynamics of Illegal Logging in Kalimantan, Indonesia. In Illegal Logging: Law Enforcement, Livelihoods and the Timber Trade; Tacconi, L., Ed.; Earthscan: London, UK, 2007; Volume 30, pp. 43–68. [Google Scholar]
- Budiman, A.; Setiabudi; Hultera, P.; Ginanjar, A. Heart of Borneo Land Cover Dynamic 1990, 2000, 2009, 2013 Kutai Barat Landscape Section Methodology and Technical Report; WWF Indonesia: Jakarta, Indonesia, 2014. [Google Scholar]
- Expert Knowledge and Its Application in Landscape Ecology; Perera, A.H.; Drew, C.A.; Johnson, C.J. (Eds.) Springer Science & Business Media: Berlin, Germany, 2011; ISBN 1461410347, 9781461410348. [Google Scholar]
- Fuller, D.O.; Jessup, T.C.; Salim, A. Loss of forest cover in Kalimantan, Indonesia, since the 1997–1998 El Nino. Conserv. Biol. 2004, 18, 249–254. [Google Scholar] [CrossRef]
- Müller, D.; Sun, Z.; Vongvisouk, T.; Pflugmacher, D.; Xu, J.; Mertz, O. Regime shifts limit the predictability of land-system change. Glob. Environ. Chang. 2014, 28, 75–83. [Google Scholar] [CrossRef]
- Vijay, V.; Pimm, S.L.; Jenkins, C.N.; Smith, S.J. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss. PLoS ONE 2016, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Warren-Thomas, E.; Dolman, P.M.; Edwards, D.P. Increasing Demand for Natural Rubber Necessitates a Robust Sustainability Initiative to Mitigate Impacts on Tropical Biodiversity. Conserv. Lett. 2015, 8, 230–241. [Google Scholar] [CrossRef][Green Version]
- Casson, A. The Hesitant Boom: Indonesia’s Oil Palm Sub-sector in an Era of Economic Crisis and Political Change; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 1999; Volume 62. [Google Scholar]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef][Green Version]
- Mertz, O.; Padoch, C.; Fox, J.; Cramb, R.A.; Leisz, S.J.; Lam, N.T.; Vien, T.D. Swidden change in southeast Asia: Understanding causes and consequences. Hum. Ecol. 2009, 37, 259–264. [Google Scholar] [CrossRef]
- Smit, H.H.; Meijaard, E.; Van der Laan, C.; Mantel, S.; Budiman, A.; Verweij, P.A. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion. PLoS ONE 2013, 8, e68610. [Google Scholar] [CrossRef] [PubMed]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.; Su, Y.; Xu, J. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Chang. 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brühl, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.H.; Abood, S.; Ghazoul, J.; Barus, B.; Obidzinski, K.; Koh, L.P. Environmental Impacts of Large-Scale Oil Palm Enterprises Exceed that of Smallholdings in Indonesia. Conserv. Lett. 2014, 7, 25–33. [Google Scholar] [CrossRef]
- World Resources Institute. Available online: http://www.wri.org (accessed on 15 January 2014).
Land Cover Change Processes | Area (ha) | % of Total Land Cover Change | ||||
---|---|---|---|---|---|---|
1990–2000 | 2000–2009 | 1990–2009 | 1990–2000 | 2000–2009 | 1990–2009 | |
No land cover change | 2,758,947 | 2,677,946 | 2,270,283 | |||
Total land cover change | 534,671 | 615,672 | 1,023,335 | |||
Degradation | 366,208 | 305,158 | 599,005 | 68 | 50 | 59 |
Deforestation | 91,908 | 114,146 | 177,969 | 17 | 19 | 17 |
Land clearance | 10 | 501 | 405 | 0 | 0 | 0 |
Regeneration | 28,417 | 60,238 | 68,070 | 5 | 10 | 7 |
Conversion of all land cover types to agriculture, mining or settlements | 41,648 | 130,170 | 168,708 | 8 | 21 | 16 |
(Conversion of all forest types to agriculture and mining) * | (30,982) | (69,914) | (113,343) | (6) | (11) | (11) |
Abandonment and regeneration | 1475 | 2617 | 1860 | 0 | 0 | 0 |
Water | 5005 | 1288 | 6293 | 1 | 0 | 1 |
Total land area | ~3.3 Mha | ~3.3 Mha | ~3.3 Mha | 100 | 100 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Laan, C.; Budiman, A.; Verstegen, J.A.; Dekker, S.C.; Effendy, W.; Faaij, A.P.C.; Kusuma, A.D.; Verweij, P.A. Analyses of Land Cover Change Trajectories Leading to Tropical Forest Loss: Illustrated for the West Kutai and Mahakam Ulu Districts, East Kalimantan, Indonesia. Land 2018, 7, 108. https://doi.org/10.3390/land7030108
Van der Laan C, Budiman A, Verstegen JA, Dekker SC, Effendy W, Faaij APC, Kusuma AD, Verweij PA. Analyses of Land Cover Change Trajectories Leading to Tropical Forest Loss: Illustrated for the West Kutai and Mahakam Ulu Districts, East Kalimantan, Indonesia. Land. 2018; 7(3):108. https://doi.org/10.3390/land7030108
Chicago/Turabian StyleVan der Laan, Carina, Arif Budiman, Judith A. Verstegen, Stefan C. Dekker, Wiwin Effendy, André P. C. Faaij, Arif Data Kusuma, and Pita A. Verweij. 2018. "Analyses of Land Cover Change Trajectories Leading to Tropical Forest Loss: Illustrated for the West Kutai and Mahakam Ulu Districts, East Kalimantan, Indonesia" Land 7, no. 3: 108. https://doi.org/10.3390/land7030108