Impacts of Future Land Use Change on Ecosystem Service Trade-Offs and Synergies in Water-Abundant Cities: A Case Study of Wuhan, China
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Source
2.3. Simulation of Future Land Use Patterns Under Different Scenarios
2.3.1. Scenario Settings
2.3.2. PLUS Model
2.4. Ecosystem Services Evaluations
2.4.1. Carbon Storage
2.4.2. Water Yield
2.4.3. Soil Conservation
2.4.4. Habitat Quality
2.5. Spearman Correlation
2.6. Geographically Weighted Regression
3. Results
3.1. Spatial–Temporal Changes of Land Use in Wuhan City
3.2. Spatial–Temporal Variation of ES in Wuhan City
3.2.1. Carbon Storage
3.2.2. Water Yield
3.2.3. Soil Conservation
3.2.4. Habitat Quality
3.3. Trade-Offs and Synergies Among ES
3.3.1. Correlation Analysis
3.3.2. Spatiotemporal Differences in ES Trade-Offs and Synergies
4. Discussion
4.1. Impact of Land Use Change on ES
4.2. Impact of Land Use Change on ES Trade-Offs and Synergies
4.3. Policy Implications
4.4. Limitations and Prospects
5. Conclusions
- (1)
- Rapid urbanization in Wuhan has led to significant changes in land use patterns. Historical trends from 2010 to 2020 indicate a significant expansion of construction land, primarily encroaching upon cultivated land and water bodies. Although the woodland area increased, spatial mismatch prevented it from effectively offsetting the negative impacts of urban expansion on ecological spaces. Under the urban expansion (UE) scenario, construction land not only directly converted cultivated land but also triggered a “urban expansion—reduction of cultivated land—encroachment on woodland/water bodies” chain reaction, intensifying the compression and fragmentation of ecological space. Conversely, under the ecological protection (EP) scenario, strict ecological protection policies effectively promoted the restoration of ecological spaces.
- (2)
- Land use change dominates the evolution of ecosystem services, with significant differences observed across scenarios. Urban expansion caused the degradation of multiple ES. However, water yield (WY) increased significantly due to surface sealing, which actually exacerbated water pollution risks. Ecological protection measures, on the other hand, favored the improvement in multiple ES. While WY decreased significantly due to enhanced infiltration and evapotranspiration, this essentially improved the region’s water conservation and regulation functions.
- (3)
- Synergistic relationships were generally observed among CS, SC, and HQ, whereas trade-offs predominantly characterized the relationships between WY and both CS and HQ. The relationship between WY and SC exhibited dynamic trade-offs or synergies depending on the specific land use pattern. As land use transforms, the trade-off/synergy relationships between ES also undergo corresponding changes, manifesting as intensification, weakening, or mutual conversion. Notably, urban expansion significantly intensified trade-off conflicts among ES, leading to the overall degradation of key ES. Ecological protection measures effectively alleviated the intensity of trade-offs between most ES pairs and enhanced synergies. It is important to note that under the EP scenario, the synergy between CS and HQ was weakened due to the characteristics of aquatic ecosystems (high habitat quality but low carbon sequestration capacity). This highlights the unique challenge faced by water-abundant cities in managing ES synergies. In planning practice, zoning and classification management policies should be formulated based on simulation results for different scenarios. Urban core areas should prioritize the restoration of blue-green spaces, water-dense zones should optimize vegetation configuration, and mountainous forest areas should strengthen closed-forest protection to achieve synergistic enhancement of ecosystem services.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Millennium Assessment Reports (MEA). Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Kertész, A.; Nagy, L.A.; Balázs, B. Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy 2019, 80, 430–438. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.R.; He, N.P.; Wang, Q.F.; Gao, Y.; Wen, D.; Li, S.G.; Niu, S.L.; Ge, J.P. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 13. [Google Scholar] [CrossRef]
- Bryan, B.A. Incentives, land use, and ecosystem services: Synthesizing complex linkages. Environ. Sci. Policy 2013, 27, 124–134. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.H.; Chen, J.Y.; Xue, S.; Zhou, Q.; Wang, Y.D.; Wang, Y.X.; Huang, Z.D.; Yang, S.L. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 12. [Google Scholar] [CrossRef]
- Song, X.J.; Chen, F.; Sun, Y.; Ma, J.; Yang, Y.J.; Shi, G.Q. Effects of land utilization transformation on ecosystem services in urban agglomeration on the northern slope of the Tianshan Mountains, China. Ecol. Indic. 2024, 162, 14. [Google Scholar] [CrossRef]
- Xu, W.B.; Xu, H.Z.; Li, X.Y.; Qiu, H.; Wang, Z.Y. Ecosystem services response to future land use/cover change (LUCC) under multiple scenarios: A case study of the Beijing-Tianjin-Hebei (BTH) region, China. Technol. Forecast. Soc. Change 2024, 205, 16. [Google Scholar] [CrossRef]
- Xue, C.; Chen, X.; Xue, L.; Zhang, H.; Chen, J.; Li, D. Modeling the spatially heterogeneous relationships between tradeoffs and synergies among ecosystem services and potential drivers considering geographic scale in Bairin Left Banner, China. Sci. Total Environ. 2023, 855, 158834. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). Global Assessment Report on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, J.; Mao, D.; Wang, Z.; Qiu, Z.; Yan, H. Identifying spatial similarities and mismatches between supply and demand of ecosystem services for sustainable Northeast China. Ecol. Indic. 2022, 134, 108501. [Google Scholar] [CrossRef]
- An, Z.; Sun, C.; Hao, S. Exploration of ecological compensation standard: Based on ecosystem service flow path. Appl. Geogr. 2025, 178, 103588. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.W.; Yan, X.M.; Ma, C.; Zheng, X.D.; Wu, J.H.; Wu, C.R. Study on trade-offs and synergies of rural ecosystem services in the Tacheng-Emin Basin, Xinjiang, China: Implications for zoning management of rural ecological functions. J. Environ. Manag. 2024, 363, 17. [Google Scholar] [CrossRef]
- Xing, L.; Hu, M.S.; Xue, M.G. The effect of urban-rural construction land transition on ecosystem services: A theoretical framework and empirical evidence for China. Habitat. Int. 2022, 124, 12. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Chang, B.L.; Chen, B.M.; Chen, W.; Xu, S.; He, X.Y.; Yao, J.; Huang, Y.Q. Analysis of trade-off and synergy of ecosystem services and driving forces in urban agglomerations in Northern China. Ecol. Indic. 2024, 165, 12. [Google Scholar] [CrossRef]
- Aryal, K.; Maraseni, T.; Apan, A. Spatial dynamics of biophysical trade-offs and synergies among ecosystem services in the Himalayas. Ecosyst. Serv. 2023, 59, 15. [Google Scholar] [CrossRef]
- Shen, J.S.; Li, S.C.; Wang, H.; Wu, S.Y.; Liang, Z.; Zhang, Y.T.; Wei, F.L.; Li, S.; Ma, L.; Wang, Y.Y.; et al. Understanding the spatial relationships and drivers of ecosystem service supply-demand mismatches towards spatially-targeted management of social-ecological system. J. Clean. Prod. 2023, 406, 14. [Google Scholar] [CrossRef]
- Yin, L.T.; Zheng, W.; Shi, H.H.; Wang, Y.Z.; Ding, D.W. Spatiotemporal Heterogeneity of Coastal Wetland Ecosystem Services in the Yellow River Delta and Their Response to Multiple Drivers. Remote Sens. 2023, 15, 21. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Qiu, Z.; Guan, Y.; Zhou, K.; Kou, Y.; Zhou, X.; Zhang, Q. Spatiotemporal Analysis of the Interactions between Ecosystem Services in Arid Areas and Their Responses to Urbanization and Various Driving Factors. Remote Sens. 2024, 16, 520. [Google Scholar] [CrossRef]
- Liu, Y.; Zhen, Z.; Zhao, Y. The Response Mechanism of Ecosystem Service Trade-Offs Along an Aridity Gradient in Humid and Semi-Humid Regions: A Case Study of Northeast China. Remote Sens. 2025, 17, 1624. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, J.; Fan, X.; Zhao, M.; Lan, Y. Assessing the variable ecosystem services relationships in polders over time: A case study in the eastern Chaohu Lake Basin, China. Environ. Earth Sci. 2016, 75, 856. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.Y.; Gao, G.L. An analytical approach for assessment of geographical variation in ecosystem service intensity in Punjab, Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 38145–38158. [Google Scholar] [CrossRef]
- Huang, Z.X.; Li, S.; Peng, J.J.; Ma, X.R.; Ding, H.X.; Cheng, F.Y.; Bi, R.T. Assessing ecosystem service dynamics and drivers for sustainable management in the Agro-pastoral ecotone of northern China: A spatiotemporal analysis. Ecol. Indic. 2024, 165, 15. [Google Scholar] [CrossRef]
- Li, W.; Geng, J.W.; Bao, J.L.; Lin, W.X.; Wu, Z.Y.; Fan, S.S. Analysis of Spatial and Temporal Variations in Ecosystem Service Functions and Drivers in Anxi County Based on the InVEST Model. Sustainability 2023, 15, 16. [Google Scholar] [CrossRef]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schrötere, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Núñez, R.; Kraxner, F.; Leduc, S.; Patrizio, P. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob. Environ. Chang.-Hum. Policy Dimens. 2018, 53, 12–23. [Google Scholar] [CrossRef]
- Li, Y.G.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.S.; Zhang, J.T.; Yin, X.W. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 19. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, R.; Rui, J.; Yu, Y. Revealing the impact of urban spatial morphology on land surface temperature in plain and plateau cities using explainable machine learning. Sustain. Cities Soc. 2025, 118, 106046. [Google Scholar] [CrossRef]
- Nouri, J.; Gharagozlou, A.; Arjmandi, R.; Faryadi, S.; Adl, M. Predicting Urban Land Use Changes Using a CA-Markov Model. Arab. J. Sci. Eng. 2014, 39, 5565–5573. [Google Scholar] [CrossRef]
- Zare, M.; Samani, A.A.N.; Mohammady, M.; Salmani, H.; Bazrafshan, J. Investigating effects of land use change scenarios on soil erosion using CLUE-s and RUSLE models. Int. J. Environ. Sci. Technol. 2017, 14, 1905–1918. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Shao, J.F. Evaluating the impact of simulated land use changes under multiple scenarios on ecosystem services in Ji’an, China. Ecol. Indic. 2023, 156, 13. [Google Scholar] [CrossRef]
- Liang, X.; Tian, H.; Li, X.; Huang, J.L.; Clarke, K.C.; Yao, Y.; Guan, Q.F.; Hu, G.H. Modeling the dynamics and walking accessibility of urban open spaces under various policy scenarios. Landsc. Urban Plan. 2021, 207, 16. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.S.; Li, S.J.; Li, Y.X.; Wang, W.Y. Urban Land Carbon Emission and Carbon Emission Intensity Prediction Based on Patch-Generating Land Use Simulation Model and Grid with Multiple Scenarios in Tianjin. Land 2023, 12, 22. [Google Scholar] [CrossRef]
- Luo, R.; He, D.M. The dynamic impact of land use change on ecosystem services as the fast GDP growth in Guiyang city. Ecol. Indic. 2023, 157, 12. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 14. [Google Scholar] [CrossRef]
- Crawford, J.T.; Lottig, N.R.; Stanley, E.H.; Walker, J.F.; Hanson, P.C.; Finlay, J.C.; Striegl, R.G. CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, controls, and regional significance. Glob. Biogeochem. Cycle 2014, 28, 197–210. [Google Scholar] [CrossRef]
- Xiong, X.X.; Zhou, T.T.; Cai, T.; Huang, W.; Li, J.; Cui, X.F.; Li, F. Land Use Transition and Effects on Ecosystem Services in Water-Rich Cities under Rapid Urbanization: A Case Study of Wuhan City, China. Land 2022, 11, 17. [Google Scholar] [CrossRef]
- Lu, Q.; Fan, H.H.; Zhang, F.Q.; Chen, W.B.; Xia, Y.P.; Yan, B. The dominant role of human activity intensity in spatial pattern of ecosystem health in the Poyang Lake ecological economic zone. Ecol. Indic. 2024, 166, 16. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, L.; Wang, Y.; Gong, J.; Li, J.F.; Chen, Q. Characteristics of urban expansion in megacities and its impact on water-related ecosystem services: A comparative study of Chengdu and Wuhan, China. Ecol. Indic. 2024, 158, 16. [Google Scholar] [CrossRef]
- Xu, J.Y.; Wang, Y.X.; Teng, M.J.; Wang, P.C.; Yan, Z.G.; Wang, H. Ecosystem services of lake-wetlands exhibit significant spatiotemporal heterogeneity and scale effects in a multi-lake megacity. Ecol. Indic. 2023, 154, 10. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Boelens, L. City profile: Suzhou, China-The interaction of water and city. Cities 2021, 112, 19. [Google Scholar] [CrossRef]
- Du, J.L.; Gong, Y.; Xi, X.; Liu, C.C.; Qian, C.Y.; Ye, B. The study on the spatiotemporal changes in tradeoffs and synergies of ecosystem services and response to land use/land cover changes in the region around Taihu Lake. Heliyon 2024, 10, 13. [Google Scholar] [CrossRef]
- Qin, J.B.; Ye, H.; Lin, K.; Qi, S.H.; Hu, B.S.; Luo, J. Assessment of water-related ecosystem services based on multi-scenario land use changes: Focusing on the Poyang Lake Basin of southern China. Ecol. Indic. 2024, 158, 13. [Google Scholar] [CrossRef]
- Li, T.N.; Liu, Y.B.; Ouyang, X.; Zhou, Y.J.; Bi, M.; Wei, G.E. Sustainable development of urban agglomerations around lakes in China: Achieving SDGs by regulating Ecosystem Service Supply and Demand through New-type Urbanization. Habitat. Int. 2024, 153, 17. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yan, F.P.; Wei, S.G.; Zhang, J.; Hu, B.F. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Sci. Data 2020, 7, 13. [Google Scholar] [CrossRef]
- Xinli, K.; Lanping, T. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province, China. Acta Ecol. Sin. 2019, 39, 672–683. [Google Scholar] [CrossRef]
- Bin, Z.; Qiu-yue, X.; Jie, D.; Lu, L. Research on the Impact of Land Use Change on the Spatio-temporal Pattern of Carbon Storage in Metropolitan Suburbs: Taking Huangpi District of Wuhan City as an Example. J. Ecol. Rural. Environ. 2023, 39, 699–712. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.F.; Pan, J.W.; Zhang, Y.; Liu, D.F.; Chen, H.T.; Wei, J.Q.; Zhang, Z.Y.; Liu, Y.L. Exploring Spatially Non-Stationary and Scale-Dependent Responses of Ecosystem Services to Urbanization in Wuhan, China. Int. J. Environ. Res. Public Health 2020, 17, 23. [Google Scholar] [CrossRef]
- Wang, M.L.; Wang, X.Y.; Shi, W.J. Exploring the response of trade-offs and synergies among ecosystem services to future land use changes in the hilly red soil region of Southern China. J. Environ. Manag. 2024, 372, 13. [Google Scholar] [CrossRef]
- Luo, Y.; Fang, S.M.; Wu, H.; Zhou, X.W.; He, Z.; Gao, L.L. Spatial and temporal evolution of habitat quality and its shrinkage effect in shrinking cities: Evidence from Northeast China. Ecol. Indic. 2024, 161, 11. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhao, J.; Fu, J.W.; Wei, W. Effects of the Grain for Green Program on the water ecosystem services in an arid area of China-Using the Shiyang River Basin as an example. Ecol. Indic. 2019, 104, 659–668. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 29. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, G.Y.; Zhang, Z.Q.; Wei, X.H.; McNulty, S.G.; Vose, J.M. Potential water yield reduction due to forestation across China. J. Hydrol. 2006, 328, 548–558. [Google Scholar] [CrossRef]
- Krebs, B.M.; Iadevaia, N.; Hecker, J.; Douglass, J.G. A simple approach to estimating the nutrient and carbon storage benefits of restoring submerged aquatic vegetation, applied to Vallisneria americana in the Caloosahatchee Estuary, Florida, USA. Ecol. Eng. 2024, 200, 10. [Google Scholar] [CrossRef]
- Ballut-Dajud, G.; Herazo, L.C.S.; Osorio-Martínez, I.M.; Báez-García, W.; Marín-Muñiz, J.L.; Torres, E.A.B. Comparison of Carbon Storage in Forested and Non-Forested Soils in Tropical Wetlands of Caimanera, Colombia, and Llano, Mexico. Sustainability 2024, 16, 17. [Google Scholar] [CrossRef]
- Song, X.X.; Liu, Y.Z.; Zhu, X.N.; Cao, G.; Chen, Y.; Zhang, Z.; Wu, D. The impacts of urban land expansion on ecosystem services in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 10635–10648. [Google Scholar] [CrossRef]
- Xiao, L.G.; Li, G.Q.; Zhao, R.Q.; Zhang, L. Effects of soil conservation measures on wind erosion control in China: A synthesis. Sci. Total Environ. 2021, 778, 10. [Google Scholar] [CrossRef]
- Yang, J.Y.; Li, J.S.; Fu, G.; Liu, B.; Pan, L.B.; Hao, H.J.; Guan, X. Spatial and Temporal Patterns of Ecosystem Services and Trade-Offs/Synergies in Wujiang River Basin, China. Remote Sens. 2023, 15, 22. [Google Scholar] [CrossRef]
- Chakraborty, A. Mountains as vulnerable places: A global synthesis of changing mountain systems in the Anthropocene. GeoJournal 2021, 86, 585–604. [Google Scholar] [CrossRef]
- Mina, M.; Bugmann, H.; Cordonnier, T.; Irauschek, F.; Klopcic, M.; Pardos, M.; Cailleret, M. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 2017, 54, 389–401. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Liu, Y.F.; Wang, Y.H.; Liu, Y.L.; Zhang, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 13. [Google Scholar] [CrossRef]
- Han, X.J.; Yu, J.L.; Shi, L.N.; Zhao, X.C.; Wang, J.J. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: Quantification and mechanisms. Ecol. Indic. 2021, 131, 15. [Google Scholar] [CrossRef]
- Hua, Y.X.; Yan, D.; Liu, X.J. Assessing synergies and trade-offs between ecosystem services in highly urbanized area under different scenarios of future land use change. Environ. Sustain. Indic. 2024, 22, 14. [Google Scholar] [CrossRef]
Category | Date Name | Year | Data Type | Source |
---|---|---|---|---|
Land Use Data | Land USE/Land Cover [49] | 2010, 2020 | Grid/30 m | https://doi.org/10.5281/zenodo.4417809 (accessed on 7 August 2024) |
Natural environment data | DEM | Grid/30 m | https://www.gscloud.cn/ | |
Precipitation | 2010, 2020 | Grid/1 km | https://data.tpdc.ac.cn/ | |
Evapotranspiration | 2010, 2020 | Grid/1 km | ||
Temperature | 2010, 2020 | Grid/1 km | ||
Soil texture | Grid/250 m | https://www.isric.org/ | ||
Soil depth [50] | Grid/100 m | http://globalchange.bnu.edu.cn/research/cdtb.jsp (accessed on 3 January 2020) | ||
Socio-economic data | GDP | 2020 | Grid/1 km | https://www.resdc.cn/ |
POP | 2020 | Grid/1 km | https://hub.worldpop.org/ | |
Distance Accessibility Data | Railway, Road, River | 2020 | Shapefile | https://openstreetmap.org/ |
NDS | EPS | UES | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
3 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Land Use Types | 2010 | 2020 | NDS | EPS | UES |
---|---|---|---|---|---|
Cultivated land | 5930.02 | 5550.83 | 4900.05 | 4867.78 | 4996.75 |
Woodland | 517.6 | 657.27 | 872.52 | 1014.15 | 635.91 |
Grassland | 3.96 | 0.90 | 0.60 | 2.87 | 0.38 |
Water | 1264.41 | 1183.27 | 1048.09 | 1502.09 | 1046.24 |
Construction land | 858.87 | 1182.47 | 1753.55 | 1186.71 | 1895.71 |
Unused land | 0.26 | 0.38 | 0.32 | 1.53 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, D.; Fang, S. Impacts of Future Land Use Change on Ecosystem Service Trade-Offs and Synergies in Water-Abundant Cities: A Case Study of Wuhan, China. Land 2025, 14, 1856. https://doi.org/10.3390/land14091856
Nan D, Fang S. Impacts of Future Land Use Change on Ecosystem Service Trade-Offs and Synergies in Water-Abundant Cities: A Case Study of Wuhan, China. Land. 2025; 14(9):1856. https://doi.org/10.3390/land14091856
Chicago/Turabian StyleNan, Ding, and Shiming Fang. 2025. "Impacts of Future Land Use Change on Ecosystem Service Trade-Offs and Synergies in Water-Abundant Cities: A Case Study of Wuhan, China" Land 14, no. 9: 1856. https://doi.org/10.3390/land14091856
APA StyleNan, D., & Fang, S. (2025). Impacts of Future Land Use Change on Ecosystem Service Trade-Offs and Synergies in Water-Abundant Cities: A Case Study of Wuhan, China. Land, 14(9), 1856. https://doi.org/10.3390/land14091856