Surface Micro-Relief Evolution in Southeast Tibet Based on InSAR Technology
Abstract
1. Introduction
2. Study Area
3. Data and Methodology
3.1. Data and Process
3.1.1. InSAR Data
3.1.2. DEM Data
3.2. Research Methods
3.2.1. Surface Deformation Monitoring Method Based on SBAS-InSAR
3.2.2. Holt–Winters Time Series Models
4. Results and Analysis
4.1. Analysis of Surface Micro-Relief Deformation Patterns in the Tailings Pond Based on the SBAS
4.2. Analysis of Surface Micro-Relief Deformation Patterns at Typical Subsidence Points in the Tailings Pond Based on the SBAS
4.3. Prediction of Surface Micro-Relief Deformation in the Tailings Pond
5. Discussions and Conclusions
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Li, R.; Gong, X.; Zhang, G.; Chen, Z. Wide-Area Subsidence Monitoring and Analysis Using Time-Series InSAR Technology: A Case Study of the Turpan Basin. Remote Sens. 2024, 16, 1611. [Google Scholar] [CrossRef]
- Esteban, E.; Dinar, A.; Calvo, E.; Albiac, J.; Calatrava, J.; Herrera, G.; Teatini, P.; Tomás, R.; Ezquerro, P.; Li, Y. Modeling the Optimal Management of Land Subsidence Due to Aquifers Overexploitation. J. Environ. Manag. 2024, 349, 119333. [Google Scholar] [CrossRef]
- Rott, H. Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Prog. Phys. Geogr. Earth Environ. 2009, 33, 769–791. [Google Scholar] [CrossRef]
- Zhang, Y.; Lian, X.; Ge, L.; Liu, X.; Du, Z.; Yang, W.; Wu, Y.; Hu, H.; Cai, Y. Surface Subsidence Monitoring Induced by Underground Coal Mining by Combining DInSAR and UAV Photogrammetry. Remote Sens. 2022, 14, 4711. [Google Scholar] [CrossRef]
- Royden, L.H.; Burchfiel, B.C.; King, R.W.; Wang, E.; Chen, Z.; Shen, F.; Liu, Y. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science 1997, 276, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ding, L.; Guo, Z.; Wang, Z.; Wei, L.; Zheng, Y.; Cui, X.; Wang, J. Spatiotemporal evolution of surface deformation based on MT-InSAR and mechanism analysis along Zhengzhou Metro, China. Tunn. Undergr. Space Technol. 2025, 156, 106182. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Yin, Y.; Tomás, R.; Zhang, J.; Zhang, Q.; Wei, Y.; Wang, M.; Lopez-Sanchez, J.M. Refined InSAR method for mapping and classification of active landslides in a high mountain region: Deqin County, southern Tibet Plateau, China. Remote Sens. Environ. 2024, 304, 114030. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Q.; Ma, J.; Yang, L.; Liu, W.; Li, J. Study and Prediction of Surface Deformation Characteristics of Different Vegetation Types in the Permafrost Zone of Linzhi, Tibet. Remote Sens. 2022, 14, 4684. [Google Scholar] [CrossRef]
- Xu, Y.; Li, T.; Tang, X.; Zhang, X.; Fan, H.; Wang, Y. Research on the Applicability of DInSAR, Stacking-InSAR and SBAS-InSAR for Mining Region Subsidence Detection in the Datong Coalfield. Remote Sens. 2022, 14, 3314. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Goldstein, R.M.; Gabriel, A.; Werner, C.L. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res. 2002, 99, 19617–19634. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Hu, J. InSAR deformation monitoring methods and research progress. J. Surv. Mapp. 2017, 46, 1717–1733. [Google Scholar]
- Chai, H.; Ding, Y.; Hu, J.; Geng, S.; Guan, P.; Xu, H.; Zhao, Y.; Xu, M. Monitoring Analysis of Urban Subsidence in Northern Henan Province Based on TS-InSAR Technology. J. Sens. 2024, 2024, 1190407. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, C.; He, Y.; Zhu, M.; Huang, W.; Shao, T. Monitoring Potential Geological Hazards with Different InSAR Algorithms: The Case of Western Sichuan. Remote Sens. 2022, 14, 2049. [Google Scholar] [CrossRef]
- Zheng, W.; Tang, J.; Zhong, K.; Ying, L.; Leng, Q.; Ding, S.; Lin, B. Geology of the Jiama porphyry copper–polymetallic system, Lhasa Region, China. Ore Geol. Rev. 2016, 74, 151–169. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.; Ding, X.; Zhu, J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Ying, L.; Wang, C.; Tang, J.; Wang, D.; Qu, W.; Li, C. Re–Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jiama Cu–Mo deposit of Tibet, China. J. Asian Earth Sci. 2014, 79, 497–506. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S. Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour. Res. 1999, 35, 2705–2723. [Google Scholar] [CrossRef]
- van Dijk, A.I.J.M.; Renzullo, L.J.; Wada, Y.; Tregoning, P. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 2014, 18, 2955–2973. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Scanlon, B.R.; Mann, M.E.; Li, X.; Tian, F.; Sun, Z.; Wang, G. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Chang. 2022, 12, 801–807. [Google Scholar] [CrossRef]
- Molnar, P.; England, P.; Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 1993, 31, 357–396. [Google Scholar] [CrossRef]
- McLaughlin, D. An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering. Adv. Water Resour. 2002, 25, 1275–1286. [Google Scholar] [CrossRef]
- She, X.; Li, D.; Yang, S.; Xie, X.; Sun, Y.; Zhao, W. Landslide Hazard Assessment for Wanzhou Considering the Correlation of Rainfall and Surface Deformation. Remote Sens. 2024, 16, 1587. [Google Scholar] [CrossRef]
- Yao, S.; Jing, C.; He, X.; He, Y.; Zhang, L. A TDFC-RNNs framework integrated temporal convolutional attention mechanism for InSAR surface deformation prediction: A case study in Beijing Plain. Int. J. Appl. Earth Obs. Geoinform. 2024, 134, 104199. [Google Scholar] [CrossRef]
- Gül, Y.; Hastaoğlu, K.Ö.; Poyraz, F. A new methodology for determining the long-term behavior of earth surface deformations from InSAR results. Adv. Space Res. 2025, 75, 3521–3540. [Google Scholar] [CrossRef]
Types of Satellites | Sentinel-1A | Sentinel-1A |
---|---|---|
Path | 41 | 150 |
Frame | 90 | 490, 495 |
Orbital direction | Ascending orbit | Descending orbit |
Angle of incidence /(°) | 41.59 | 36.42 |
Wave band | C | C |
Wave length /(cm) | 5.6 | 5.6 |
Polarization mode | VV | VV |
Revisit cycle /(d) | 12 | 12 |
Spatial resolution/(m × m) | 5 × 20 | 5 × 20 |
Number of images | 36 | 36 |
Date | 2020.1–2022.12 | 2020.1–2022.12 |
No. | Track No. 41 | No. | Track No. 41 | No. | Track No. 41 | No. | Track No. 150 | No. | Track No. 150 | No. | Track No. 150 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 20200110 | 13 | 20210104 | 25 | 20220111 | 1 | 20200105 | 13 | 20210111 | 25 | 20220106 |
2 | 20200203 | 14 | 20210209 | 26 | 20220204 | 2 | 20200210 | 14 | 20210204 | 26 | 20220211 |
3 | 20200310 | 15 | 20210305 | 27 | 20220312 | 3 | 20200305 | 15 | 20210312 | 27 | 20220307 |
4 | 20200403 | 16 | 20210410 | 28 | 20220405 | 4 | 20200410 | 16 | 20210405 | 28 | 20220412 |
5 | 20200509 | 17 | 20210504 | 29 | 20220511 | 5 | 20200504 | 17 | 20210511 | 29 | 20220506 |
6 | 20200602 | 18 | 20210609 | 30 | 20220604 | 6 | 20200609 | 18 | 20210604 | 30 | 20220611 |
7 | 20200708 | 19 | 20210703 | 31 | 20220722 | 7 | 20200703 | 19 | 20210710 | 31 | 20220705 |
8 | 20200801 | 20 | 20210808 | 32 | 20220803 | 8 | 20200808 | 20 | 20210803 | 32 | 20220810 |
9 | 20200906 | 21 | 20210901 | 33 | 20220908 | 9 | 20200901 | 21 | 20210908 | 33 | 20220903 |
10 | 20201012 | 22 | 20211007 | 34 | 20221002 | 10 | 20201007 | 22 | 20211002 | 34 | 20221009 |
11 | 20201105 | 23 | 20211112 | 35 | 20221107 | 11 | 20201031 | 23 | 20211107 | 35 | 20221102 |
12 | 20201211 | 24 | 20211206 | 36 | 20221201 | 12 | 20201206 | 24 | 20211201 | 36 | 20221208 |
Typical Point | Location | Surface Deformation Ratio (mm/a) |
---|---|---|
1 | 29°42′58.79″ N, 91°39′43.44″ E | −71.219612 |
2 | 29°39′53.96″ N, 91°40′4.93″ E | −23.378403 |
3 | 29°39′52.09″ N, 91°37′17.70″ E | −25.349558 |
4 | 29°38′19.08″ N, 91°37′20.71″ E | −28.604897 |
5 | 29°38′18.49″ N, 91°36′37.09″ E | −30.920837 |
6 | 29°38′18.49″ N, 91°36′37.09″ E | −40.950325 |
7 | 29°38′3.65″ N, 91°36′3.29″ E | −64.114998 |
8 | 29°38′6.12″ N,91°34′26.62″ E | −28.655600 |
9 | 29°37′43.64″ N, 91°34′54.71″ E | −44.883034 |
10 | 29°37′43.64″ N, 91°34′54.71″ E | −38.930767 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gesangzhuoma; Han, Z.; Cheng, L.; Jiang, Z.; Jiang, Q. Surface Micro-Relief Evolution in Southeast Tibet Based on InSAR Technology. Land 2025, 14, 503. https://doi.org/10.3390/land14030503
Gesangzhuoma, Han Z, Cheng L, Jiang Z, Jiang Q. Surface Micro-Relief Evolution in Southeast Tibet Based on InSAR Technology. Land. 2025; 14(3):503. https://doi.org/10.3390/land14030503
Chicago/Turabian StyleGesangzhuoma, Zitong Han, Liang Cheng, Zhouyuqian Jiang, and Qun’ou Jiang. 2025. "Surface Micro-Relief Evolution in Southeast Tibet Based on InSAR Technology" Land 14, no. 3: 503. https://doi.org/10.3390/land14030503
APA StyleGesangzhuoma, Han, Z., Cheng, L., Jiang, Z., & Jiang, Q. (2025). Surface Micro-Relief Evolution in Southeast Tibet Based on InSAR Technology. Land, 14(3), 503. https://doi.org/10.3390/land14030503