Exploring the Possibilities of Implementing the ALS-Based 3-30-300 Concept for Urban Green Space Management in Small Municipalities
Abstract
1. Introduction
2. Materials and Methods
2.1. General Concept
2.2. Study Area
2.3. Data Source
2.4. Point Cloud Processing
2.4.1. Tree Visibility
2.4.2. Canopy Coverage
2.4.3. Distance from a Public Green Space
3. Results
3.1. The “3” Component—Tree Visibility
3.2. The “30” Component—Tree Canopy Cover
3.3. The “300” Component—Access to Green Areas
3.4. Results of the 3-30-300 Rule
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Directorate General for Research and Innovation. European Green Deal: Research & Innovation Call; Publications Office: Luxembourg, 2021. [Google Scholar]
- Dobrzańska, J.; Nadolny, A.; Kalbarczyk, R.; Ziemiańska, M. Urban Resilience and Residential Greenery—The Evidence from Poland. Sustainability 2022, 14, 11317. [Google Scholar] [CrossRef]
- Surma, M.J. Green Infrastructure Planning as a Part of Sustainable Urban Development—Case Studies of Copenhagen and Wroclaw. Proc. Latv. Univ. Agric. Landsc. Archit. Art 2013, 3, 22–32. [Google Scholar]
- Konijnendijk, C.C.; Ricard, R.M.; Kenney, A.; Randrup, T.B. Defining Urban Forestry—A Comparative Perspective of North America and Europe. Urban For. Urban Green. 2006, 4, 93–103. [Google Scholar] [CrossRef]
- Aslanoğlu, R.; Kazak, J.K.; Szewrański, S.; Świąder, M.; Arciniegas, G.; Chrobak, G.; Jakóbiak, A.; Turhan, E. Ten Questions Concerning the Role of Urban Greenery in Shaping the Future of Urban Areas. Build. Environ. 2025, 267, 112154. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- Evans, D.L.; Falagán, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Mead, B.R.; Davies, J.A.C. Ecosystem Service Delivery by Urban Agriculture and Green Infrastructure—A Systematic Review. Ecosyst. Serv. 2022, 54, 101405. [Google Scholar] [CrossRef]
- Hegetschweiler, K.T.; Wartmann, F.M.; Dubernet, I.; Fischer, C.; Hunziker, M. Urban Forest Usage and Perception of Ecosystem Services—A Comparison between Teenagers and Adults. Urban For. Urban Green. 2022, 74, 127624. [Google Scholar] [CrossRef]
- Nastran, M.; Pintar, M.; Železnikar, Š.; Cvejić, R. Stakeholders’ Perceptions on the Role of Urban Green Infrastructure in Providing Ecosystem Services for Human Well-Being. Land 2022, 11, 299. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. Effects of Green Space Dynamics on Urban Heat Islands: Mitigation and Diversification. Ecosyst. Serv. 2017, 23, 38–46. [Google Scholar] [CrossRef]
- Liang, D.; Huang, G. Influence of Urban Tree Traits on Their Ecosystem Services: A Literature Review. Land 2023, 12, 1699. [Google Scholar] [CrossRef]
- Pappalardo, V.; La Rosa, D.; Campisano, A.; La Greca, P. The Potential of Green Infrastructure Application in Urban Runoff Control for Land Use Planning: A Preliminary Evaluation from a Southern Italy Case Study. Ecosyst. Serv. 2017, 26, 345–354. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem Service Bundles along the Urban-Rural Gradient: Insights for Landscape Planning and Management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef]
- Karaczun, Z.M.; Michalak, W. Wpływ Zmiany Klimatu i Zanieczyszczenia Powietrza na Zdrowie Mieszkańców Warszawy. Wyd; PKEOM: Warszawa, Poland, 2019. [Google Scholar]
- Rey-Gozalo, G.; Barrigón Morillas, J.M.; Montes González, D.; Vílchez-Gómez, R. Influence of Green Areas on the Urban Sound Environment. Curr. Pollut. Rep. 2023, 9, 746–759. [Google Scholar] [CrossRef]
- Gołos, P. Społeczne i Ekonomiczne Aspekty Pozaprodukcyjnych Funkcji Lasu i Gospodarki Leśnej—Wyniki Badań Opinii Społecznej; Instytut Badawczy Leśnictwa: Sękocin Stary, Poland, 2018; ISBN 978-83-62830-68-8. [Google Scholar]
- Fagerholm, N.; Eilola, S.; Arki, V. Outdoor Recreation and Nature’s Contribution to Well-Being in a Pandemic Situation—Case Turku, Finland. Urban For. Urban Green. 2021, 64, 127257. [Google Scholar] [CrossRef] [PubMed]
- Litleskare, S.; Calogiuri, G. Nature Visits during the COVID-19 Pandemic in Norway: Facilitators, Motives, and Associations with Sociodemographic Characteristics. Front. Public Health 2023, 11, 1138915. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The Psychological Impact of Quarantine and How to Reduce It: Rapid Review of the Evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef]
- Derks, J.; Winkel, G.; Strieck, J.; De Vreese, R. Visitor Frequencies and Attitudes towards Urban Forests and Their Management, before and during the COVID-19 Lockdown. A Mixed Methods Case Study in Bonn, Germany. Ecosyst. People 2023, 19, 2195021. [Google Scholar] [CrossRef]
- Raanaas, R.K.; Patil, G.G.; Hartig, T. Health Benefits of a View of Nature through the Window: A Quasi-Experimental Study of Patients in a Residential Rehabilitation Center. Clin. Rehabil. 2012, 26, 21–32. [Google Scholar] [CrossRef]
- Dou, Y.; Zhen, L.; De Groot, R.; Du, B.; Yu, X. Assessing the Importance of Cultural Ecosystem Services in Urban Areas of Beijing Municipality. Ecosyst. Serv. 2017, 24, 79–90. [Google Scholar] [CrossRef]
- Ciesielski, M.; Stereńczak, K. Using Flickr Data and Selected Environmental Characteristics to Analyse the Temporal and Spatial Distribution of Activities in Forest Areas. For. Policy Econ. 2021, 129, 102509. [Google Scholar] [CrossRef]
- Mierzejewska, L.; Sikorska-Podyma, K.; Szejnfeld, M.; Wdowicka, M.; Modrzewski, B.; Lechowska, E. The Role of Greenery in Stress Reduction among City Residents during the COVID-19 Pandemic. IJERPH 2023, 20, 5832. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, W.; La Rosa, D. Which Communities Have Better Accessibility to Green Space? An Investigation into Environmental Inequality Using Big Data. Landsc. Urban Plan. 2020, 204, 103919. [Google Scholar] [CrossRef]
- Elmqvist, T.; Gómez-Baggethun, E.; Langemeyer, J. Ecosystem Services Provided by Urban Green Infrastructure. In Routledge Handbook of Ecosystem Services; Routledge: London, UK, 2016; pp. 452–468. [Google Scholar]
- Gałecka-Drozda, A.; Wilkaniec, A.; Szczepańska, M.; Świerk, D. Potential Nature-Based Solutions and Greenwashing to Generate Green Spaces: Developers’ Claims versus Reality in New Housing Offers. Urban For. Urban Green. 2021, 65, 127345. [Google Scholar] [CrossRef]
- Lafortezza, R.; Chen, J.; Van Den Bosch, C.K.; Randrup, T.B. Nature-Based Solutions for Resilient Landscapes and Cities. Environ. Res. 2018, 165, 431–441. [Google Scholar] [CrossRef]
- United Nations General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 22 December 2024).
- Banaszak, K.; Gajda, M.; Hobot, A.; Mazur, M.; Renc, A.; Przyrodniczo-Klimatyczne Wskaźniki Zrównoważonego Rozwoju Miast. Przewodnik Dla Miast 2022. Available online: https://www.gov.pl/web/klimat/adaptacja-do-zmian-klimatu (accessed on 22 December 2024).
- Browning, M.; Lee, K. Within What Distance Does “Greenness” Best Predict Physical Health? A Systematic Review of Articles with GIS Buffer Analyses across the Lifespan. IJERPH 2017, 14, 675. [Google Scholar] [CrossRef]
- WHO. World Health Organization Urban Green Spaces: A Brief for Action. 2017. Available online: https://www.who.int/europe/publications/i/item/9789289052498 (accessed on 22 December 2024).
- Pengelly Consulting. “Nature Nearby”: Accessible Natural Greenspace Guidance; Natural England: York, UK, 2010. [Google Scholar]
- Wysmułek, J.; Hełdak, M.; Kucher, A. The Analysis of Green Areas’ Accessibility in Comparison with Statistical Data in Poland. IJERPH 2020, 17, 4492. [Google Scholar] [CrossRef]
- McKernan, P.; Grose, M. An Analysis of Accessible Natural Greenspace Provision in the South East. For. Comm. 2007. Available online: https://publications.naturalengland.org.uk/file/5620643968057344 (accessed on 22 December 2024).
- Kabisch, N.; Strohbach, M.; Haase, D.; Kronenberg, J. Urban Green Space Availability in European Cities. Ecol. Indic. 2016, 70, 586–596. [Google Scholar] [CrossRef]
- Cardinali, M.; Beenackers, M.A.; Van Timmeren, A.; Pottgiesser, U. The Relation between Proximity to and Characteristics of Green Spaces to Physical Activity and Health: A Multi-Dimensional Sensitivity Analysis in Four European Cities. Environ. Res. 2024, 241, 117605. [Google Scholar] [CrossRef]
- Sejm of the Republic of Poland Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 21 czerwca 2024 r. w sprawie ogłoszenia jednolitego tekstu ustawy o planowaniu i zagospodarowaniu przestrzennym. 2024. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240001130 (accessed on 22 December 2024).
- Hunter, A.J.; Luck, G.W. Defining and Measuring the Social-Ecological Quality of Urban Greenspace: A Semi-Systematic Review. Urban Ecosyst. 2015, 18, 1139–1163. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Evidence-Based Guidelines for Greener, Healthier, More Resilient Neighbourhoods: Introducing the 3–30–300 Rule. J. For. Res. 2023, 34, 821–830. [Google Scholar] [CrossRef]
- Koeser, A.; Hauer, R.; Andreu, M.; Northrop, R.; Clarke, M.; Diaz, J.; Hilbert, D.; Konijnendijk, C.; Landry, S.; Thompson, G.; et al. Using the 3-30-300 Rule to Assess Urban Forest Access and Preferences in Florida (United States). Arboric. Urban For. 2023. [Google Scholar] [CrossRef]
- Zhang, J.; Browning, M.H.E.M.; Liu, J.; Cheng, Y.; Zhao, B.; Dadvand, P. Is Indoor and Outdoor Greenery Associated with Fewer Depressive Symptoms during COVID-19 Lockdowns? A Mechanistic Study in Shanghai, China. Build. Environ. 2023, 227, 109799. [Google Scholar] [CrossRef]
- Ling, K. A Look at Access to Green Space in Toronto Using the 3-30-300 Rule for Greener Cities. 2022. Available online: https://utoronto.scholaris.ca/items/97cff79a-09ad-4ede-b851-f85b8be60b27 (accessed on 22 December 2024).
- Daland, S. An Investigation of the 3-30-300 Rule in a Swedish Context. 2023. Available online: https://gupea.ub.gu.se/bitstream/handle/2077/77317/B1232.pdf?sequence=1 (accessed on 22 December 2024).
- Nieuwenhuijsen, M.J.; Dadvand, P.; Márquez, S.; Bartoll, X.; Barboza, E.P.; Cirach, M.; Borrell, C.; Zijlema, W.L. The Evaluation of the 3-30-300 Green Space Rule and Mental Health. Environ. Res. 2022, 215, 114387. [Google Scholar] [CrossRef] [PubMed]
- Wyrzykowski, B.; Mościcka, A. Implementation of the 3-30-300 Green City Concept: Warsaw Case Study. Appl. Sci. 2024, 14, 10566. [Google Scholar] [CrossRef]
- Battisti, L.; Aimar, F.; Giacco, G.; Devecchi, M. Urban Green Development and Resilient Cities: A First Insight into Urban Forest Planning in Italy. Sustainability 2023, 15, 12085. [Google Scholar] [CrossRef]
- Browning, M.H.E.M.; Locke, D.H.; Konijnendijk, C.; Labib, S.M.; Rigolon, A.; Yeager, R.; Bardhan, M.; Berland, A.; Dadvand, P.; Helbich, M.; et al. Measuring the 3-30-300 Rule to Help Cities Meet Nature Access Thresholds. Sci. Total Environ. 2024, 907, 167739. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote Sensing of Urban Green Spaces: A Review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Fekete, A.; Cserep, M. Tree Segmentation and Change Detection of Large Urban Areas Based on Airborne LiDAR. Comput. Geosci. 2021, 156, 104900. [Google Scholar] [CrossRef]
- Kükenbrink, D.; Gardi, O.; Morsdorf, F.; Thürig, E.; Schellenberger, A.; Mathys, L. Above-Ground Biomass References for Urban Trees from Terrestrial Laser Scanning Data. Ann. Bot. 2021, 128, 709–724. [Google Scholar] [CrossRef]
- Tang, L.; He, J.; Peng, W.; Huang, H.; Chen, C.; Yu, C. Assessing the Visibility of Urban Greenery Using MLS LiDAR Data. Landsc. Urban Plan. 2023, 232, 104662. [Google Scholar] [CrossRef]
- Holopainen, M.; Vastaranta, M.; Hyyppä, J. Outlook for the Next Generation’s Precision Forestry in Finland. Forests 2014, 5, 1682–1694. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, B. Individual Urban Tree Species Classification Using Very High Spatial Resolution Airborne Multi-Spectral Imagery Using Longitudinal Profiles. Remote Sensing 2012, 4, 1741–1757. [Google Scholar] [CrossRef]
- Ciesielski, M.; Sterenczak, K. Accuracy of Determining Specific Parameters of the Urban Forest Using Remote Sensing. iForest 2019, 12, 498–510. [Google Scholar] [CrossRef]
- Plowright, A.A.; Coops, N.C.; Eskelson, B.N.I.; Sheppard, S.R.J.; Aven, N.W. Assessing Urban Tree Condition Using Airborne Light Detection and Ranging. Urban For. Urban Green. 2016, 19, 140–150. [Google Scholar] [CrossRef]
- Croeser, T.; Sharma, R.; Weisser, W.W.; Bekessy, S.A. Acute Canopy Deficits in Global Cities Exposed by the 3-30-300 Benchmark for Urban Nature. Nat. Commun. 2024, 15, 9333. [Google Scholar] [CrossRef]
- Dijkstra, L.; Lecomte, L. Towns in Europe: A Technical Paper; DG REGIO Technical Papers; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- European Commission; Joint Research Centre; Florio, P.; Kakoulaki, G.; Martinez, A. Non-Commercial Light Detection and Ranging (LiDAR) Data in Europe; Publications Office: Luxembourg, 2021. [Google Scholar]
- Kacperczyk, E.; Ciesielska, K.; Hernik, G.; Matysek-Zdun, U. Powierzchnia i Ludność w Przekroju Terytorialnym w 2023 r./Area and Population in the Territorial Profile in 2023; Główny Urząd Statystyczny (Statistics Poland): Warsaw, Poland, 2023. [Google Scholar]
- Head Office of Geodesy and Cartography (GUGiK) Basic Information. 2024. Available online: https://www.gov.pl/web/gugik-en (accessed on 22 December 2024).
- American Society for Photogrammetry and Remote Sensing (ASPRS) LAS Specification Version 1.2. Available online: https://www.asprs.org/a/society/committees/lidar/Downloads/ASPRS_LAS%201_2.pdf (accessed on 22 December 2024).
- OpenStreetMap contributors Planet Dump. 2017. Available online: https://planet.osm.org (accessed on 22 December 2024).
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023.
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; De Boissieu, F.; Achim, A. lidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications 2016, 4.1.1. Available online: https://r-lidar.r-universe.dev/lidR (accessed on 22 December 2024).
- Popescu, S.C.; Wynne, R.H. Seeing the Trees in the Forest. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [Google Scholar] [CrossRef]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M.; Wang, T.; Hussin, Y.A. Generating Pit-Free Canopy Height Models from Airborne Lidar. Photogramm. Eng. Remote Sens. 2014, 80, 863–872. [Google Scholar] [CrossRef]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R. Spatial Data Science: With Applications in R, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2023; ISBN 978-0-429-45901-6. [Google Scholar]
- Padgham, M.; Lovelace, R.; Salmon, M.; Rudis, B. Osmdata. JOSS 2017, 2, 305. [Google Scholar] [CrossRef]
- QGIS Development Team QGIS Geographic Information System; QGIS Association. Available online: http://www.qgis.org (accessed on 22 December 2024).
- Labib, S.M.; Huck, J.J.; Lindley, S. Modelling and Mapping Eye-Level Greenness Visibility Exposure Using Multi-Source Data at High Spatial Resolutions. Sci. Total Environ. 2021, 755, 143050. [Google Scholar] [CrossRef] [PubMed]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe Urban Forest Policy Brief; United Nations Economic Commission for Europe. 2023. Available online: https://land.unece.org/treesincities/ (accessed on 22 December 2024).
- Hummel, S.; Hudak, A.; Uebler, E.H.; Falkowski, M.; Megown, K. A Comparison of Accuracy and Cost of LiDAR versus Stand Exam Data for Landscape Management on the Malheur National Forest. J. For. 2011, 109, 267–273. [Google Scholar] [CrossRef]
- Sejm of the Republic of Poland Ustawa z Dnia 27 Listopada 2024 r. o Zmianie Ustawy—Prawo Ochrony Środowiska Oraz Niektórych Innych Ustaw 2024. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240001940 (accessed on 22 December 2024).
- Pataki, D.E.; Alberti, M.; Cadenasso, M.L.; Felson, A.J.; McDonnell, M.J.; Pincetl, S.; Pouyat, R.V.; Setälä, H.; Whitlow, T.H. The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Front. Ecol. Evol. 2021, 9, 603757. [Google Scholar] [CrossRef]
- McDonald, R.I.; Aronson, M.F.J.; Beatley, T.; Beller, E.; Bazo, M.; Grossinger, R.; Jessup, K.; Mansur, A.V.; Puppim De Oliveira, J.A.; Panlasigui, S.; et al. Denser and Greener Cities: Green Interventions to Achieve Both Urban Density and Nature. People Nat. 2023, 5, 84–102. [Google Scholar] [CrossRef]
- Karteris, M.; Theodoridou, I.; Mallinis, G.; Tsiros, E.; Karteris, A. Towards a Green Sustainable Strategy for Mediterranean Cities: Assessing the Benefits of Large-Scale Green Roofs Implementation in Thessaloniki, Northern Greece, Using Environmental Modelling, GIS and Very High Spatial Resolution Remote Sensing Data. Renew. Sustain. Energy Rev. 2016, 58, 510–525. [Google Scholar] [CrossRef]
- Verheij, J.; Ay, D.; Gerber, J.-D.; Nahrath, S. Ensuring Public Access to Green Spaces in Urban Densification: The Role of Planning and Property Rights. Plan. Theory Pract. 2023, 24, 342–365. [Google Scholar] [CrossRef]
- Rigolon, A. Nonprofits and Park Equity in Los Angeles: A Promising Way Forward for Environmental Justice. Urban Geogr. 2019, 40, 984–1009. [Google Scholar] [CrossRef]
Characteristics | Czempiń | Jasień | Mrocza | Świdnik | Wyszków |
---|---|---|---|---|---|
Area [km2] | 5.0 | 3.6 | 4.8 | 20.4 | 20.9 |
Population | 4137 | 5127 | 4044 | 36,806 | 26,042 |
Population density [people/km2] | 824 | 1420 | 846 | 1803 | 1252 |
Green areas [%] | 0.8 | 0.6 | 1.07 | 8.1 | 2.1 |
Forest cover [%] | 1.6 | 2.2 | 6.1 | 9.6 | 3.4 |
Town | Tree Visibility Component for the Buildings * [%] | ||
---|---|---|---|
I | II | III | |
Czempiń | 88.0 | 55.4 | 26.8 |
Jasień | 88.6 | 53.9 | 26.2 |
Mrocza | 89.7 | 55.4 | 28.2 |
Świdnik | 80.7 | 49.9 | 23.6 |
Wyszków | 80.5 | 51.1 | 25.8 |
Town | Share of Buildings Meeting the Criterion of Tree Canopy Cover [%] | ||||
---|---|---|---|---|---|
30 m | 60 m | 90 m | 120 m | 150 m | |
Czempiń | 2.5 | 2.4 | 2.7 | 2.7 | 2.9 |
Jasień | 4.0 | 10.7 | 12.6 | 13.8 | 16.0 |
Mrocza | 0.1 | 0.1 | 0.4 | 0.1 | 0.0 |
Świdnik | 1.1 | 1.1 | 1.2 | 1.3 | 1.4 |
Wyszków | 7.9 | 8.6 | 8.4 | 8.4 | 8.5 |
Town | Share of Buildings Meeting the Criterion of Distance [%] | |||||
---|---|---|---|---|---|---|
Size of Green Area | Total Number of Green Areas | |||||
≥1 ha | ≥5 ha | ≥10 ha | ≥1 ha | ≥5 ha | ≥10 ha | |
Czempiń | 38.3 | 29.6 | 5.0 | 4 | 1 | 3 |
Jasień | 77.3 | 53.6 | 14.9 | 7 | 3 | 2 |
Mrocza | 46.7 | 32.6 | 0.0 | 5 | 2 | 2 |
Świdnik | 61.9 | 32.3 | 31.2 | 18 | 2 | 5 |
Wyszków | 21.8 | 12.9 | 9.5 | 10 | 9 | 1 |
Town | Variant I * | Variant II ** | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | |
Czempiń | 7.6 | 57.7 | 32.6 | 2.1 | 42.24 | 52.57 | 4.84 | 0.35 |
Jasień | 2.7 | 26.9 | 56.2 | 14.2 | 36.00 | 47.84 | 11.52 | 4.64 |
Mrocza | 4.8 | 54.0 | 41.2 | 0.0 | 44.60 | 55.40 | 0.00 | 0.00 |
Świdnik | 8.5 | 40.2 | 50.0 | 1.3 | 35.51 | 47.53 | 16.03 | 0.93 |
Wyszków | 15.8 | 67.4 | 16.7 | 4.9 | 45.44 | 44.32 | 5.98 | 4.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitelsztedt, K.; Ciesielski, M.; Hycza, T.; Lisańczuk, M.; Guderski, K.; Kurpiewska, S.; Korzeniewski, K. Exploring the Possibilities of Implementing the ALS-Based 3-30-300 Concept for Urban Green Space Management in Small Municipalities. Land 2025, 14, 358. https://doi.org/10.3390/land14020358
Mitelsztedt K, Ciesielski M, Hycza T, Lisańczuk M, Guderski K, Kurpiewska S, Korzeniewski K. Exploring the Possibilities of Implementing the ALS-Based 3-30-300 Concept for Urban Green Space Management in Small Municipalities. Land. 2025; 14(2):358. https://doi.org/10.3390/land14020358
Chicago/Turabian StyleMitelsztedt, Krzysztof, Mariusz Ciesielski, Tomasz Hycza, Marek Lisańczuk, Kacper Guderski, Sylwia Kurpiewska, and Krzysztof Korzeniewski. 2025. "Exploring the Possibilities of Implementing the ALS-Based 3-30-300 Concept for Urban Green Space Management in Small Municipalities" Land 14, no. 2: 358. https://doi.org/10.3390/land14020358
APA StyleMitelsztedt, K., Ciesielski, M., Hycza, T., Lisańczuk, M., Guderski, K., Kurpiewska, S., & Korzeniewski, K. (2025). Exploring the Possibilities of Implementing the ALS-Based 3-30-300 Concept for Urban Green Space Management in Small Municipalities. Land, 14(2), 358. https://doi.org/10.3390/land14020358