The Impact of Urban Construction Land Expansion on Carbon Emissions from the Perspective of the Yangtze River Delta Integration, China
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis
4. Materials and Methods
4.1. Study Area
4.2. Methods
4.2.1. Geographic Regression Discontinuity Design (GRDD)
4.2.2. Control Variable Selection
4.3. Data Source and Descriptive Statistics
5. Results
5.1. Geographic Regression Discontinuity Results
5.2. Robust Analysis
5.3. The Inverted U-Shaped Relationship between Urban Construction Land and CO2 Emissions
5.4. Mechanism Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Langhammer, R.J.; Hiemenz, U. Regional integration among developing countries: Opportunities, obstacles and options. In Open Access Publications from Kiel Institute for the World Economy; ZBW: Hamburg, Germany, 1990. [Google Scholar]
- El-Agraa, A.M. Regional Integration: Experience, Theory and Measurement; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Kamau, N.L. The impact of regional integration on economic growth: Empirical evidence from COMESA, EAC and SADC trade blocs. Am. J. Soc. Manag. Sci. 2010, 1, 150–163. [Google Scholar] [CrossRef]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed]
- Rounsevell, M.D.A.; Reay, D.S. Land use and climate change in the UK. Land Use Policy 2009, 26, S160–S169. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.X.; Tang, Z.P.; Mei, Z.A. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Wu, Y.M.; Yue, X.L.; Wang, M.J.; Hu, P.P. Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China. Land 2022, 11, 719. [Google Scholar] [CrossRef]
- Huang, C.W.; McDonald, R.I.; Seto, K.C. The importance of land governance for biodiversity conservation in an era of global urban expansion. Landsc. Urban Plan. 2018, 173, 44–50. [Google Scholar] [CrossRef]
- Li, M.C.; Liu, H.M.; Yu, S.K.; Wang, J.S.; Miao, Y.; Wang, C.X. Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China. Int. J. Environ. Res. Public Health 2022, 19, 8910. [Google Scholar] [CrossRef] [PubMed]
- Güneralp, B.; Seto, K.C. Can gains in efficiency offset the resource demands and CO2 emissions from constructing and operating the built environment? Appl. Geogr. 2012, 32, 40–50. [Google Scholar] [CrossRef]
- Deng, X.; Yu, Y.; Liu, Y. Effect of construction land expansion on energy-related carbon emissions: Empirical analysis of China and its provinces from 2001 to 2011. Energies 2015, 8, 5516–5537. [Google Scholar] [CrossRef]
- Lin, Q.W.; Zhang, L.; Qiu, B.K.; Zhao, Y.; Wei, C. Spatiotemporal Analysis of Land Use Patterns on Carbon Emissions in China. Land 2021, 10, 141. [Google Scholar] [CrossRef]
- Hamdi-Cherif, M.; Waisman, H. Global carbon pricing and the “Common But Differentiated Responsibilities”: The case of China. Int. Environ. Agreem.-Polit. Law Econ. 2016, 16, 671–689. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Hepinstall-Cymerman, J.; Alberti, M. Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landsc. Urban Plan. 2011, 103, 83–93. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Chuai, X.; Yang, H.; Li, J.; Huang, X.; Chuai, X.; Yang, H. The impact of land urbanization on carbon dioxide emissions in the Yangtze River Delta, China: A multiscale perspective. Cities 2021, 116, 103275. [Google Scholar] [CrossRef]
- Chuai, X.W.; Yuan, Y.; Zhang, X.Y.; Guo, X.M.; Zhang, X.L.; Xie, F.J.; Zhao, R.Q.; Li, J.B. Multiangle land use-linked carbon balance examination in Nanjing City, China. Land Use Policy 2019, 84, 305–315. [Google Scholar] [CrossRef]
- Feng, Y.J.; Chen, S.R.; Tong, X.H.; Lei, Z.K.; Gao, C.; Wang, J.F. Modeling changes in China’s 2000–2030 carbon stock caused by land use change. J. Clean. Prod. 2020, 252, 119659. [Google Scholar] [CrossRef]
- Niu, L.; Lin, J.; Zhou, L.; Li, A.; Zhou, Y. The prediction of carbon emissions from construction land in central Yunnan urban agglomeration area based on multiple linear regression model. Int. J. Glob. Energy Issues 2023, 45, 349–365. [Google Scholar] [CrossRef]
- Hung, L.Q.; Asaeda, T.; Thao, V.T.P. Carbon emissions in the field of land use, land use change, and forestry in the Vietnam mainland. Wetl. Ecol. Manag. 2021, 29, 315–329. [Google Scholar] [CrossRef]
- Chuai, X.W.; Feng, J.X. High resolution carbon emissions simulation and spatial heterogeneity analysis based on big data in Nanjing City, China. Sci. Total Environ. 2019, 686, 828–837. [Google Scholar] [CrossRef]
- Zhang, R.S.; Matsushima, K.; Kobayashi, K. Can land use planning help mitigate transport-related carbon emissions? A case of Changzhou. Land Use Policy 2018, 74, 32–40. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Ge, R.B.; Lin, T.; Ye, H.; Li, X.H.; Huang, N. Spatial apportionment of urban greenhouse gas emission inventory and its implications for urban planning: A case study of Xiamen, China. Ecol. Indic. 2018, 85, 644–656. [Google Scholar] [CrossRef]
- Peng, J.Y.; Zheng, Y.H.; Liu, C.J. The Impact of Urban Construction Land Use Change on Carbon Emissions: Evidence from the China Land Market in 2000–2019. Land 2022, 11, 1440. [Google Scholar] [CrossRef]
- Li, J.; Jiao, L.; Li, F.; Lu, X.; Hou, J.; Li, R.; Cai, D. Spatial disequilibrium and influencing factors of carbon emission intensity of construction land in China. J. Clean. Prod. 2023, 396, 136464. [Google Scholar] [CrossRef]
- Yang, X.; Shang, G.Y.; Deng, X.Z. Estimation, decomposition and reduction potential calculation of carbon emissions from urban construction land: Evidence from 30 provinces in China during 2000–2018. Environ. Dev. Sustain. 2022, 24, 7958–7975. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Wu, Y.M.; Yue, X.L.; Wang, M.J.; Hu, P.P. Identifying the spatial heterogeneity in the effects of the construction land scale on carbon emissions: Case study of the Yangtze River Economic Belt, China. Environ. Res. 2022, 212, 113397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, C.H.; Wang, M.L.; Zhao, L.; Zhao, Y.C.; Zhang, Q.P.; Zhang, C.Y. Decoupling analysis to assess the impact of land use patterns on carbon emissions: A case study in the Yellow River Delta efficient eco-economic zone, China. J. Clean. Prod. 2023, 412, 137415. [Google Scholar] [CrossRef]
- Li, Y.N.; Cai, M.M.; Wu, K.Y.; Wei, J.C. Decoupling analysis of carbon emission from construction land in Shanghai. J. Clean. Prod. 2019, 210, 25–34. [Google Scholar] [CrossRef]
- Lv, T.G.; Geng, C.; Zhang, X.M.; Li, Z.Y.; Hu, H.; Fu, S.F. Impact of the intensive use of urban construction land on carbon emission efficiency: Evidence from the urban agglomeration in the middle reaches of the Yangtze River. Environ. Sci. Pollut. Res. 2023, 30, 113729–113746. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.G.; Hu, F.X. How Does Land Urbanization Promote CO2 Emissions Reduction? Evidence From Chinese Prefectural-Level Cities. Front. Environ. Sci. 2021, 9, 766839. [Google Scholar] [CrossRef]
- Stone, B. Urban sprawl and air quality in large US cities. J. Environ. Manag. 2008, 86, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Makido, Y.; Dhakal, S.; Yamagata, Y. Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Clim. 2012, 2, 55–67. [Google Scholar] [CrossRef]
- Lee, D.S.; Lemieux, T. Regression Discontinuity Designs in Economics. J. Econ. Lit. 2010, 48, 281–355. [Google Scholar] [CrossRef]
- Hahn, J.Y.; Todd, P.; Van der Klaauw, W. Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica 2001, 69, 201–209. [Google Scholar] [CrossRef]
- Imbens, G.; Lemieux, T.; Imbens, G.W.; Lemieux, T. Regression discontinuity designs: A guide to practice. J. Econom. 2008, 142, 615–635. [Google Scholar] [CrossRef]
- Keele, L.J.; Titiunik, R. Geographic Boundaries as Regression Discontinuities. Polit. Anal. 2015, 23, 127–155. [Google Scholar] [CrossRef]
- Keele, L.; Titiunik, R.; Zubizarreta, J.R. Enhancing a geographic regression discontinuity design through matching to estimate the effect of ballot initiatives on voter turnout. J. R. Stat. Soc. Ser. A-Stat. Soc. 2015, 178, 223–239. [Google Scholar] [CrossRef]
- Zubizarreta, J.R. Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery. J. Am. Stat. Assoc. 2012, 107, 1360–1371. [Google Scholar] [CrossRef]
- MacDonald, J.M.; Klick, J.; Grunwald, B. The effect of private police on crime: Evidence from a geographic regression discontinuity design. J. R. Stat. Soc. Ser. A-Stat. Soc. 2016, 179, 831–846. [Google Scholar] [CrossRef]
- Alejo, C.; Meyer, C.; Walker, W.S.; Gorelik, S.R.; Josse, C.; Aragon-Osejo, J.L.; Rios, S.; Augusto, C.; Llanos, A.; Coomes, O.T.; et al. Are indigenous territories effective natural climate solutions? A neotropical analysis using matching methods and geographic discontinuity designs. PLoS ONE 2021, 16, 0245110. [Google Scholar] [CrossRef] [PubMed]
- Rischard, M.; Branson, Z.; Miratrix, L.; Bornn, L. Do School Districts Affect NYC House Prices? Identifying Border Differences Using a Bayesian Nonparametric Approach to Geographic Regression Discontinuity Designs. J. Am. Stat. Assoc. 2021, 116, 619–631. [Google Scholar] [CrossRef]
- D‘Arcangelo, F.M.; Percoco, M. Housing rent and road pricing in Milan: Evidence from a geographical discontinuity approach. Transp. Policy 2015, 44, 108–116. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Ebenstein, A.; Greenstone, M.; Li, H.B. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Zeng, J.N.; Zhou, Q.Y. The chosen fortunate in the urbanization process in China? Evidence from a geographic regression discontinuity study. Rev. Dev. Econ. 2019, 23, 1768–1787. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, X.; Wang, X. Research on coupling degree and coupling path between China’s carbon emission efficiency and industrial structure upgrading. Environ. Sci. Pollut. Res. 2020, 27, 25149–25162. [Google Scholar] [CrossRef]
- Wu, L.; Sun, L.; Qi, P.; Ren, X.; Sun, X. Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions. Resour. Policy 2021, 74, 102329. [Google Scholar] [CrossRef]
- Jin, X.; Yu, W. Information and communication technology and carbon emissions in China: The rebound effect of energy intensive industry. Sustain. Prod. Consum. 2022, 32, 731–742. [Google Scholar] [CrossRef]
- Najam, H.; Abbas, J.; Alvarez-Otero, S.; Dogan, E.; Sial, M.S. Towards green recovery: Can banks achieve financial sustainability through income diversification in ASEAN countries? Econ. Anal. Policy 2022, 76, 522–533. [Google Scholar] [CrossRef]
- Paul, S.; Shankar, S. Regulatory reforms and the efficiency and productivity growth in electricity generation in OECD countries. Energy Econ. 2022, 108, 105888. [Google Scholar] [CrossRef]
- Shahbaz, M.; Gao, C.; Zhai, L.; Shahzad, F.; Khan, I. Environmental air pollution management system: Predicting user adoption behavior of big data analytics. Technol. Soc. 2021, 64, 101473. [Google Scholar] [CrossRef]
- Lv, X.; Zhu, Y.; Du, J. Can Regional Integration Policies Enhance the Win–Win Situation of Economic Growth and Environmental Protection? New Evidence for Achieving Carbon Neutrality Goals. Sustainability 2024, 16, 1647. [Google Scholar] [CrossRef]
- Ito, K.; Zhang, S.; Ito, K.; Zhang, S. Willingness to pay for clean air: Evidence from air purifier markets in China. J. Polit. Econ. 2020, 128, 1627–1672. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, Y.; Chen, Y.; Zhang, Z.; Wu, D.; Chen, H.; Han, Y. The impact of urban construction land change on carbon emissions—A case study of Wuhan city. Int. J. Environ. Res. Public Health 2023, 20, 922. [Google Scholar] [CrossRef]
- Pang, Q.; Zhou, W.; Zhao, T.; Zhang, L. Impact of urbanization and industrial structure on carbon emissions: Evidence from Huaihe River Eco-Economic Zone. Land 2021, 10, 1130. [Google Scholar] [CrossRef]
- Yang, W.; Cao, X. Progress of research on influencing factors of CO2 emissions from multi-scale transport. Prog. Geogr. 2019, 38, 1814–1828. [Google Scholar] [CrossRef]
- Feng, Y.; Peng, D.; Li, Y.; Liu, S. Can regional integration reduce carbon intensity? Evidence from city cluster in China. Environ. Dev. Sustain. 2024, 26, 5249–5274. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, Y.; Hang, Y.; Zheng, H.; Li, Y.; Guan, D.; Li, J.; Zhou, Y.; Li, L.; Hubacek, K. City-level emission peak and drivers in China. Sci. Bull. 2022, 67, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- Ai, K.; Xu, N. Does Regional Integration Improve Carbon Emission Performance?—A Quasi-Natural Experiment on Regional Integration in the Yangtze River Economic Belt. Sustainability 2023, 15, 15154. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, F. Analysis of Economic Efficiency and Influencing Factors of Urban Construction Land in Beijing-Tianjin-Hebei under Carbon Emission Constraints. Land 2022, 11, 1926. [Google Scholar] [CrossRef]
- Perkins, R.; Neumayer, E. Do recipient country characteristics affect international spillovers of CO 2-efficiency via trade and foreign direct investment? Clim. Chang. 2012, 112, 469–491. [Google Scholar] [CrossRef]
- Chen, X.; Huang, B. Club membership and transboundary pollution: Evidence from the European Union enlargement. Energy Econ. 2016, 53, 230–237. [Google Scholar] [CrossRef]
- Ran, J.; Ju, C.; Yu, L.; Bao, F.; Hu, Z. Remission of carbon pollutants with the regional integration enlargement: Data from Yangtze River Delta. Geol. J. 2023, 58, 3424–3437. [Google Scholar] [CrossRef]
- Yan, D.S.; Li, P.X. Can Regional Integration Reduce Urban Carbon Emission? An Empirical Study Based on the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2023, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Markolf, S.A.; Matthews, H.S.; Azevedo, I.L.; Hendrickson, C. An integrated approach for estimating greenhouse gas emissions from 100 US metropolitan areas. Environ. Res. Lett. 2017, 12, 024003. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Zhao, R.; Zhang, M.; Wu, C. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Xiao, R.; Tan, G.; Huang, B.; Li, J.; Luo, Y. Pathways to sustainable development: Regional integration and carbon emissions in China. Energy Rep. 2022, 8, 5137–5145. [Google Scholar] [CrossRef]
- He, M.; Chen, Y.; van Marrewijk, C. The effects of urban transformation on productivity spillovers in China. Econ. Model. 2021, 95, 473–488. [Google Scholar] [CrossRef]
- Yan, D.; Sun, W.; Li, P.; Wang, Y. The effects of integration regional enlargement on urban innovation developments in the Yangtze River Delta. Geogr. Res. 2022, 41, 2568–2586. [Google Scholar]
- Shah, M.I.; AbdulKareem, H.K.; Ishola, B.D.; Abbas, S. The roles of energy, natural resources, agriculture and regional integration on CO2 emissions in selected countries of ASEAN: Does political constraint matter? Environ. Sci. Pollut. Res. 2023, 30, 26063–26077. [Google Scholar] [CrossRef]
Variables | Symbol | Measures | Unit | Mean | Standard Deviation | Minimum | Maximum | N |
---|---|---|---|---|---|---|---|---|
CO2 emissions | CE | CEADs | mt | 35.628 | 28.770 | 5.624 | 230.712 | 616 |
Urban construction land area | UCL | China Urban Construction Statistical Yearbook | km2 | 183.721 | 347.018 | 23.73 | 3088 | 616 |
GDP per capita | PGDP | GDP/population | 104 yuan/people | 7.210 | 3.732 | 0.964 | 29.335 | 616 |
Population urbanization rate | PU | Urban population/total population | % | 63.480 | 11.268 | 36.77 | 88.86 | 616 |
Population density | PD | Total population/urban area | Peoples/km2 | 936.779 | 533.650 | 142.410 | 3651.170 | 616 |
Public fiscal expenditure | PFE | Annual general public budgeting expenditure | 108 yuan | 431.019 | 630.453 | 57.322 | 7547.621 | 616 |
Intensity of Foreign direct investment | FDI | Foreign direct investment/GDP | 104 dollars/104 yuan | 0.638 | 2.516 | 0.0003 | 46.155 | 616 |
Energy utilization efficiency | NUE | GDP/total energy consumption | 104 yuan/t | 2.115 | 1.681 | 0.431 | 12.195 | 616 |
Road density | RD | Road area/urban area | % | 0.354 | 0.421 | 0.009 | 3.204 | 616 |
Urban green coverage rate | UGR | Green space area/urban area | % | 42.533 | 4.693 | 21.84 | 77.78 | 616 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Panel A: | CE | |||
Nit | 9.397 *** | 31.545 *** | 15.461 *** | 13.113 *** |
(1.520) | (3.473) | (2.131) | (2.092) | |
R2 | 0.767 | 0.170 | 0.751 | 0.770 |
Panel B: | UCL | |||
Nit | 33.494 *** | 188.780 *** | 35.478 *** | 35.363 *** |
(11.861) | (43.909) | (12.866) | (12.874) | |
R2 | 0.955 | 0.088 | 0.953 | 0.955 |
Panel C: | CE | |||
UCL | 0.047 *** | 0.067 *** | 0.055 *** | 0.047 *** |
(0.005) | (0.002) | (0.005) | (0.005) | |
PGDP | 1.987 *** | 1.798 *** | 1.977 *** | |
(0.173) | (0.170) | (0.172) | ||
PU | −0.341 *** | −0.371 *** | −0.359 *** | |
(0.040) | (0.041) | (0.041) | ||
PD | −0.002 * | −0.002 ** | −0.003 ** | |
(0.001) | (0.001) | (0.001) | ||
PFE | 0.011 *** | 0.006 ** | 0.011 *** | |
(0.003) | (0.003) | (0.003) | ||
FDI | −0.304 | −0.225 | −0.341 | |
(0.226) | (0.223) | (0.225) | ||
NUE | −0.782 ** | −1.401 *** | −1.169 *** | |
(0.337) | (0.366) | (0.364) | ||
RD | 10.642 *** | 11.115 *** | 11.190 *** | |
(2.224) | (2.257) | (2.222) | ||
UGR | −0.560 *** | −0.605 *** | −0.533 *** | |
(0.121) | (0.122) | (0.121) | ||
_cons | 48.518 *** | 24.092 *** | 51.657 *** | 50.288 *** |
(5.512) | (0.942) | (5.494) | (5.521) | |
R2 | 0.783 | 0.680 | 0.775 | 0.784 |
N | 616 | 616 | 616 | 616 |
Time-fixed effect | Y | N | N | Y |
Spatial fixed effect | Y | N | N | Y |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
PGDP | PU | PD | PFE | FDI | NUE | RD | UGR | |
UCL | 0.001 | 0.051 | −1.146 | 3.634 | 0.008 | 0.0004 | 0.001 | −0.010 |
(0.003) | (0.015) | (0.308) | (0.404) | (0.006) | (0.001) | (0.000) | (0.008) | |
N | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 |
Time-fixed effect | Y | Y | Y | Y | Y | Y | Y | Y |
Spatial fixed effect | Y | Y | Y | Y | Y | Y | Y | Y |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Bandwidths | CE | ||||
h = h* = 0.498 | h = 1.5 h* = 0.747 | h = 2 h* = 0.996 | h = 4 h* = 1.992 | h = 8 h* = 3.984 | |
UCL | 0.079 *** | 0.087 *** | 0.050 *** | 0.046 *** | 0.046 *** |
(0.009) | (0.008) | (0.007) | (0.006) | (0.005) | |
R2 | 0.877 | 0.881 | 0.837 | 0.839 | 0.785 |
N | 152 | 200 | 256 | 392 | 584 |
Control variables | Y | Y | Y | Y | Y |
Time-fixed effect | Y | Y | Y | Y | Y |
Spatial fixed effect | Y | Y | Y | Y | Y |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
CE | ||||
UCL | 0.148 *** | 0.143 *** | 0.155 *** | 0.147 *** |
(0.008) | (0.006) | (0.008) | (0.008) | |
UCL2 | −0.000 031 *** | −0.000 026 *** | −0.000031 *** | −0.000031 *** |
(0.000) | (0.000) | (0.000) | (0.000) | |
R2 | 0.838 | 0.752 | 0.828 | 0.839 |
N | 616 | 616 | 616 | 616 |
Control variables | Y | N | Y | Y |
Time-fixed effect | Y | N | N | Y |
Spatial fixed effect | Y | N | N | Y |
Area of UCL corresponding to the peak of carbon emissions (km2) | 2359.739 | 2718.735 | 2520.312 | 2371.613 |
Explanatory Variable | Industrial Structure | Consumption Pattern | Technological Investment | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Proportion of the Secondary and Tertiary Industries | Industrial Structure Upgrading | Consumption Level | Consumption Structure | Financial Investment in Science and Technology | ||||||
NI | CE | ISU | CE | AC | CE_ | EC | CE | STI | CE | |
UCL(UCL_) | 0.006 ** | 0.047 *** | 0.001 *** | 0.047 *** | 0.040 *** | 0.160 *** | −0.003 *** | 0.047 *** | 0.131 *** | 0.047 *** |
(0.003) | (0.005) | (0.000) | (0.005) | (0.019) | (0.007) | (0.001) | (0.005) | (0.011) | (0.005) | |
R2 | 0.262 | 0.784 | 0.453 | 0.784 | 0.871 | 0.742 | 0.229 | 0.784 | 0.964 | 0.784 |
NI | 10.555 ** | |||||||||
(4.716) | ||||||||||
NI2 | −0.057 ** | |||||||||
(0.026) | ||||||||||
R2 | 0.758 | |||||||||
ISU | 23.441 *** | |||||||||
(5.563) | ||||||||||
ISU2 | −8.619 *** | |||||||||
(2.207) | ||||||||||
R2 | 0.842 | |||||||||
AC | 0.202 *** | |||||||||
(0.062) | ||||||||||
AC2 | −0.030 ** | |||||||||
(0.014) | ||||||||||
R2 | 0.554 | |||||||||
EC | −3.202 *** | |||||||||
(0.464) | ||||||||||
EC2 | 0.028 *** | |||||||||
(0.005) | ||||||||||
R2 | 0.797 | |||||||||
STE | 0.355 *** | |||||||||
(0.019) | ||||||||||
STE2 | −0.0004 *** | |||||||||
(0.000) | ||||||||||
R2 | 0.923 | |||||||||
N | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 |
Control variables | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Time-fixed effect | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Spatial fixed effect | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, X.; Liao, F.; Mi, Z.; Wu, G. The Impact of Urban Construction Land Expansion on Carbon Emissions from the Perspective of the Yangtze River Delta Integration, China. Land 2024, 13, 911. https://doi.org/10.3390/land13070911
Niu X, Liao F, Mi Z, Wu G. The Impact of Urban Construction Land Expansion on Carbon Emissions from the Perspective of the Yangtze River Delta Integration, China. Land. 2024; 13(7):911. https://doi.org/10.3390/land13070911
Chicago/Turabian StyleNiu, Xing, Fenghua Liao, Zixuan Mi, and Guancen Wu. 2024. "The Impact of Urban Construction Land Expansion on Carbon Emissions from the Perspective of the Yangtze River Delta Integration, China" Land 13, no. 7: 911. https://doi.org/10.3390/land13070911
APA StyleNiu, X., Liao, F., Mi, Z., & Wu, G. (2024). The Impact of Urban Construction Land Expansion on Carbon Emissions from the Perspective of the Yangtze River Delta Integration, China. Land, 13(7), 911. https://doi.org/10.3390/land13070911