Empowering Rural Development: Evidence from China on the Impact of Digital Village Construction on Farmland Scale Operation
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypotheses
2.1. Research on Digital Village Construction
2.2. Research on Farmland Scale Operation
2.3. Factors Affecting Farmland Scale Operation
2.4. Theoretical Hypotheses
3. Data and Model
3.1. Data Source
3.2. Study Area
3.3. Variable Selection
3.4. Model Estimation
4. Results
4.1. Baseline Results
4.2. Mechanism Analysis
4.3. Heterogeneity Analysis
4.4. Robustness Check
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
First-Level Index | Second Level Index | Specific Index |
---|---|---|
Rural digital infrastructure index (0.27) | Information infrastructure index (0.30) | Access to mobile devices per 10,000 population |
5G base stations per 10,000 population | ||
Digital Financial Infrastructure Index (0.30) | Coverage of digital financial infrastructure | |
Depth of use of digital financial infrastructure | ||
Digital commercial landmark index (0.20) | Percentage of commercial landmarks POI independently registered on the midline of the total number of commercial landmarks captured per unit area | |
Agricultural terminal service platform index | Village level coverage of Yinong Information Society | |
Basic data Resource system Index (0.20) | County data center/data center | |
Application of dynamic Monitoring and response system | ||
Digital index of rural economy (0.40) | Digital production index (0.40) | Construction of National Modern Agricultural demonstration Project |
Construction of National New industrialization demonstration Base | ||
Taobao Village accounts for the proportion of all administrative villages | ||
Digital supply chain index (0.30) | Number of logistics outlets per 10,000 people | |
Logistics limitation for receiving parcels | ||
Number of logistics warehouses | ||
Digital marketing index (0.20) | E-commerce sales of agricultural products per 100 million yuan in the added value of the primary industry | |
Do you have live sales | ||
Whether e-commerce enters the comprehensive demonstration county of rural areas | ||
Net quotient per 10,000 population | ||
Number of high-ranking sellers of agricultural products per 10,000 people | ||
Number of merchants per 10,000 people on wholesale platforms | ||
Digital financial index (0.10) | The degree of digitization of inclusive Finance | |
Digital index of rural governance (0.14) | Governance means index (1.00) | The number of users used in government business per 10,000 Alipay real name users |
The proportion of villages and towns with Wechat public service platform in all villages and towns | ||
Digital level of Ecological Protection Supervision | ||
Digital Index of Rural Life (0.19) | Digital consumption index (0.28) | Consumption amount on the midline of total retail sales of consumer goods per 100 million yuan |
Sales of ecommerce in GDP per billion yuan | ||
The amount of intelligent consumption per 100 million yuan of online commodity consumption | ||
Digital Education and Health Index of Culture and Travel (0.52) | Top 100 per capita entertainment video APP usage | |
Top 100 entertainment video classes for each installed APP device Average length of use of APP | ||
APP usage in the top 100 education and training categories per capita | ||
Top 100 education and training categories for each installed APP device Average length of use of APP | ||
Record the number of scenic spots per 10,000 people on the online tourism platform | ||
The online travel platform records the total number of cumulative comments on scenic spots per 10,000 people | ||
Number of doctors from the county registered on the online medical platform per 10,000 people | ||
Digital life service index (0.20) | The number of people per 10,000 Alipay users who use online living services | |
Number of orders for online consumption per capita | ||
Per capita online living consumption | ||
The number of passengers on the Internet for every 10,000 people | ||
Number of digital map users per 10,000 population |
References
- Lowder, S.K.; Sánchez, M.V.; Bertini, R. Farms, Family Farms, Farmland Distribution and Farm Labour: What Do We Know Today? Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Cohn, A.S.; Newton, P.; Gil, J.D.; Kuhl, L.; Samberg, L.; Ricciardi, V.; Manly, J.R.; Northrop, S. Smallholder agriculture and climate change. Annu. Rev. Environ. Resour. 2017, 42, 347–375. [Google Scholar] [CrossRef]
- Czyżewski, B.; Kryszak, Ł. Can a pursuit of productivity be reconciled with sustainable practices in small-scale farming? Evidence from central and eastern Europe. J. Clean. Prod. 2023, 414, 137684. [Google Scholar] [CrossRef]
- Wang, W.; Gong, J.; Wang, Y.; Shen, Y. Exploring the effects of rural site conditions and household livelihood capitals on agricultural land transfers in China. Land Use Policy 2021, 108, 105523. [Google Scholar] [CrossRef]
- Smith, H.E.; Ryan, C.M.; Vollmer, F.; Woollen, E.; Keane, A.; Fisher, J.A.; Baumert, S.; Grundy, I.M.; Carvalho, M.; Lisboa, S.N. Impacts of land use intensification on human wellbeing: Evidence from rural Mozambique. Glob. Environ. Chang. 2019, 59, 101976. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, J.; Luan, J.; Lan, X.; Fang, D. The analysis and inspiration of scale operation in agricultural process of United States and Japan. Issues Agric. Econ. 2014, 35, 101–109. [Google Scholar]
- Chen, F.; Ma, W.; Luo, Y.; Qiu, H. Impacts of plot size on maize yields and farm profits: Implications for sustainable land use and food security. Int. J. Sustain. Dev. World Ecol. 2022, 29, 888–900. [Google Scholar] [CrossRef]
- Ma, L.; Long, H.; Tu, S.; Zhang, Y.; Zheng, Y. Farmland transition in China and its policy implications. Land Use Policy 2020, 92, 104470. [Google Scholar] [CrossRef]
- Tian, G.; Duan, J.; Yang, L. Spatio-temporal pattern and driving mechanisms of cropland circulation in China. Land Use Policy 2021, 100, 105118. [Google Scholar] [CrossRef]
- Van Loon, J.; Woltering, L.; Krupnik, T.J.; Baudron, F.; Boa, M.; Govaerts, B. Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. Agric. Syst. 2020, 180, 102792. [Google Scholar] [CrossRef]
- Yin, H.; Huo, P.; Wang, S. Agricultural and Rural Digital Transformation: Realistic Representation, Impact Mechanism and Promotion Strategy. Reform 2020, 12, 48–56. [Google Scholar]
- Bakker, K.; Ritts, M. Smart Earth: A meta-review and implications for environmental governance. Glob. Environ. Chang. 2018, 52, 201–211. [Google Scholar] [CrossRef]
- Malik, P.K.; Singh, R.; Gehlot, A.; Akram, S.V.; Das, P.K. Village 4.0: Digitalization of village with smart internet of things technologies. Comput. Ind. Eng. 2022, 165, 107938. [Google Scholar] [CrossRef]
- Huang, J.; Su, L.; Huang, Q.; Liu, X. Facilitating inclusive ICT application and e-Commerce development in rural China. Agric. Econ. 2022, 53, 938–952. [Google Scholar] [CrossRef]
- Trendov, M.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas: Status Report; FAO: Rome, Italy, 2019. [Google Scholar]
- Haefner, L.; Sternberg, R. Spatial implications of digitization: State of the field and research agenda. Geogr. Compass 2020, 14, e12544. [Google Scholar] [CrossRef]
- Zhang, M.L.; Chen, M.S. China’s Digital Economy: Opportunities and Risks; International Monetary Fund: Washington, DC, USA, 2019. [Google Scholar]
- Liu, M.; Zhang, Q.; Gao, S.; Huang, J. The spatial aggregation of rural e-commerce in China: An empirical investigation into Taobao Villages. J. Rural Stud. 2020, 80, 403–417. [Google Scholar] [CrossRef]
- Cristobal-Fransi, E.; Montegut-Salla, Y.; Ferrer-Rosell, B.; Daries, N. Rural cooperatives in the digital age: An analysis of the Internet presence and degree of maturity of agri-food cooperatives’e-commerce. J. Rural Stud. 2020, 74, 55–66. [Google Scholar] [CrossRef]
- Kaila, H.; Tarp, F. Can the Internet improve agricultural production? Evidence from Viet Nam. Agric. Econ. 2019, 50, 675–691. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Jorge, L.A.d.C.; Sanches, I.D.A.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.d.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Foster, A.D.; Rosenzweig, M.R. Are there too many farms in the world? Labor market transaction costs, machine capacities, and optimal farm size. J. Political Econ. 2022, 130, 636–680. [Google Scholar] [CrossRef]
- Sumner, D.A. American farms keep growing: Size, productivity, and policy. J. Econ. Perspect. 2014, 28, 147–166. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, Y.-T.; Long, H.; Deng, W. Land consolidation: A comparative research between Europe and China. Land Use Policy 2022, 112, 105790. [Google Scholar] [CrossRef]
- Li, F.; Feng, S.; Lu, H.; Qu, F.; D’Haese, M. How do non-farm employment and agricultural mechanization impact on large-scale farming? A spatial panel data analysis from Jiangsu Province, China. Land Use Policy 2021, 107, 105517. [Google Scholar] [CrossRef]
- Dong, X.; Vuran, M.C.; Irmak, S. Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks 2013, 11, 1975–1987. [Google Scholar] [CrossRef]
- Tan, L. Cloud-based decision support and automation for precision agriculture in orchards. IFAC-Pap 2016, 49, 330–335. [Google Scholar] [CrossRef]
- Vitianingsih, A.V. Regional Development Planning Strategy Through the Digital Village Program to Realize the Welfare of Rural Communities. Indones. J. Appl. Ind. Sci. (ESA) 2023, 2, 45–58. [Google Scholar]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, Y.; Chen, H.; Zhao, S. The Impact Factors and Management Policy of Digital Village Development: A Case Study of Gansu Province, China. Land 2023, 12, 616. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will digital technologies transform agriculture in developing countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Ozdogan, B.; Gacar, A.; Aktas, H. Digital agriculture practices in the context of agriculture 4.0. J. Econ. Financ. Account. 2017, 4, 186–193. [Google Scholar] [CrossRef]
- Hornbeck, R.; Naidu, S. When the levee breaks: Black migration and economic development in the American South. Am. Econ. Rev. 2014, 104, 963–990. [Google Scholar] [CrossRef]
- Davis, C.A. Why Did Sugarcane Growers Suddenly Adopt Existing Technology? Working Paper; Yale University: New Haven, CT, USA, 2017. [Google Scholar]
- Fan, S.; Brzeska, J.; Keyzer, M.; Halsema, A. From Subsistence to Profit: Transforming Smallholder Farms; International Food Policy Research Institute: Washington, DC, USA, 2013; Volume 26. [Google Scholar]
- Rigg, J.; Salamanca, A.; Thompson, E.C. The puzzle of East and Southeast Asia’s persistent smallholder. J. Rural Stud. 2016, 43, 118–133. [Google Scholar] [CrossRef]
- Hazell, P. Five big questions about five hundred million small farms. In Proceedings of the Conference on New Directions for Smallholder Agriculture, Rome, Italy, 24–25 January 2011; pp. 24–25. [Google Scholar]
- Tack, J.; Yu, J. Risk management in agricultural production. In Handbook of Agricultural Economics; Elsevier: Amsterdam, The Netherlands, 2021; Volume 5, pp. 4135–4231. [Google Scholar]
- Komarek, A.M.; De Pinto, A.; Smith, V.H. A review of types of risks in agriculture: What we know and what we need to know. Agric. Syst. 2020, 178, 102738. [Google Scholar] [CrossRef]
- Zhang, S.; Kang, Y.; Gao, X.; Chen, P.; Cheng, X.; Song, S.; Li, L. Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream. Agric. Water Manag. 2023, 277, 108091. [Google Scholar] [CrossRef]
- Guo, Y.; Cui, M.; Xu, Z. Effect of spatial characteristics of farmland plots on transfer patterns in China: A supply and demand perspective. Land 2023, 12, 444. [Google Scholar] [CrossRef]
- Su, Y.; Araral, E.; Wang, Y. The effects of farmland use rights trading and labor outmigration on the governance of the irrigation commons: Evidence from China. Land Use Policy 2020, 91, 104378. [Google Scholar] [CrossRef]
- Rogers, S.; Wilmsen, B.; Han, X.; Wang, Z.J.-H.; Duan, Y.; He, J.; Li, J.; Lin, W.; Wong, C. Scaling up agriculture? The dynamics of land transfer in inland China. World Dev. 2021, 146, 105563. [Google Scholar] [CrossRef]
- Fang, T.; Zhuo, Y.; Wu, C.; Zhou, Y.; Xu, Z.; Li, G. Exploration of informal farmland leasing mode: A case study of Huang Village in China. Land 2022, 11, 756. [Google Scholar] [CrossRef]
- Fei, R.; Lin, Z.; Chunga, J. How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy 2021, 103, 105300. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Huang, C. The Impact of Digital Village Construction on County-Level Economic Growth and Its Driving Mechanisms: Evidence from China. Agriculture 2023, 13, 1917. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, S.; Zhang, J.; Furuya, K. Increased attention to smart development in rural areas: A scientometric analysis of smart village research. Land 2022, 11, 1362. [Google Scholar] [CrossRef]
- Cai, Z.; Li, S.; Cheng, D. Has Digital Village Construction Improved Rural Family Resilience in China? Evidence Based on China Household Finance Survey. Sustainability 2023, 15, 8704. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big data in smart farming–a review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Z.; Zhang, Q. Internet deepening and farmers income increase: Impact mechanisms and empirical evidence. Macroeconomics 2021, 5, 104–122. [Google Scholar]
- Chao, P.; Biao, M.; Zhang, C. Poverty alleviation through e-commerce: Village involvement and demonstration policies in rural China. J. Integr. Agric. 2021, 20, 998–1011. [Google Scholar]
- Rojo-Gimeno, C.; van der Voort, M.; Niemi, J.K.; Lauwers, L.; Kristensen, A.R.; Wauters, E. Assessment of the value of information of precision livestock farming: A conceptual framework. NJAS-Wagening. J. Life Sci. 2019, 90, 100311. [Google Scholar] [CrossRef]
- Engler, N.; Krarti, M. Optimal designs for net zero energy controlled environment agriculture facilities. Energy Build. 2022, 272, 112364. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Chen, Y. The Impact of High-Standard Farmland Construction Policy on Grain Quality from the Perspectives of Technology Adoption and Cultivated Land Quality. Agriculture 2023, 13, 1702. [Google Scholar] [CrossRef]
- Blok, V.; Gremmen, B. Agricultural technologies as living machines: Toward a biomimetic conceptualization of smart farming technologies. Ethics Policy Environ. 2018, 21, 246–263. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Smith, M.J. Getting value from artificial intelligence in agriculture. Anim. Prod. Sci. 2018, 60, 46–54. [Google Scholar] [CrossRef]
- Daum, T.; Buchwald, H.; Gerlicher, A.; Birner, R. Smartphone apps as a new method to collect data on smallholder farming systems in the digital age: A case study from Zambia. Comput. Electron. Agric. 2018, 153, 144–150. [Google Scholar] [CrossRef]
- De Amorim, W.S.; Deggau, A.B.; do Livramento Gonçalves, G.; da Silva Neiva, S.; Prasath, A.R.; De Andrade, J.B.S.O. Urban challenges and opportunities to promote sustainable food security through smart cities and the 4th industrial revolution. Land Use Policy 2019, 87, 104065. [Google Scholar] [CrossRef]
- Boehlje, M. How might big data impact industry structure and enhance margins? Int. Food Agribus. Manag. Rev. 2016, 19, 13–16. [Google Scholar]
- Wu, H.; Hao, H.; Lei, H.; Ge, Y.; Shi, H.; Song, Y. Farm size, risk aversion and overuse of fertilizer: The heterogeneity of large-scale and small-scale wheat farmers in Northern China. Land 2021, 10, 111. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurship, and High-Quality Economic Development: Empirical Evidence from Urban China. Manag. World 2020, 36, 65–76. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Xiao, J.J. The impact of digital finance on household consumption: Evidence from China. Econ. Model. 2020, 86, 317–326. [Google Scholar] [CrossRef]
- Qin, F.; Wang, J.; Xu, Q. How Does the Digital Economy Affect Farmer’s Income?—Evidence from the Development of Rural E-commerce in China. China Econ. Q. 2022, 2, 591–612. [Google Scholar] [CrossRef]
- Yu, C.; Jia, N.; Li, W.; Wu, R. Digital inclusive finance and rural consumption structure–evidence from Peking University digital inclusive financial index and China household finance survey. China Agric. Econ. Rev. 2022, 14, 165–183. [Google Scholar] [CrossRef]
- Luo, C.; Li, S.; Sicular, T. The long-term evolution of national income inequality and rural poverty in China. China Econ. Rev. 2020, 62, 101465. [Google Scholar] [CrossRef]
- Maulu, S.; Hasimuna, O.J.; Mutale, B.; Mphande, J.; Siankwilimba, E. Enhancing the role of rural agricultural extension programs in poverty alleviation: A review. Cogent Food Agric. 2021, 7, 1886663. [Google Scholar] [CrossRef]
- Lin, Y.; Li, C. Does rural e-commerce agglomeration help expand family farms’ size? Evidence from Taobao villages in China’s Yangtze River Delta. Electron. Commer. Res. 2023, 23, 1731–1752. [Google Scholar] [CrossRef]
- Zhang, F.; Bao, X.; Deng, X.; Xu, D. Rural Land Transfer in the Information Age: Can Internet Use Affect Farmers’ Land Transfer-In? Land 2022, 11, 1761. [Google Scholar] [CrossRef]
Variable Name | Variable Description | Mean | Std. Dev. |
---|---|---|---|
Part A: dependent variable | |||
ScaledFarmlandArea | Area of Farmland Scale Operation (100 mu) | 1.92 | 4.66 |
ScaledFarmlandProp | Proportion of Farmland Scale Operation | 0.09 | 0.20 |
Part B: independent variable | |||
DVI | Digital Village Index | 42.54 | 8.70 |
Part C: control variables | |||
GDPpc | Per Capita GDP (10 k Yuan) | 3.01 | 1.77 |
BudgetExpend | General Public Budget Expenditure (10 k Yuan) | 44.17 | 34.14 |
FixedInvest | Total Fixed Asset Investment (10 k Yuan) | 152.41 | 166.80 |
SecIndShare | Proportion of Secondary Industry | 0.42 | 0.11 |
TradVillage | Traditional Village (1 = Yes, 0 = No) | 0.02 | 0.14 |
TourismVillage | Scenic Tourism Village (1 = Yes, 0 = No) | 0.01 | 0.10 |
PovertyVillage | Targeted Poverty Alleviation Village(1 = Yes, 0 = No) | 0.18 | 0.39 |
Topography | Plain (1 = Yes, 0 = No) | 0.04 | 0.20 |
Hill (1 = Yes, 0 = No) | 0.58 | 0.49 | |
Mountain (1 = Yes, 0 = No) | 0.38 | 0.49 | |
MigrationRate | Proportion of Out-migrating Population | 0.27 | 0.22 |
FarmlandPc | Per Capita Farmland Area (mu) | 1.61 | 1.27 |
StreetlightRate | Proportion of Village Groups with Streetlights on Main Roads | 0.24 | 0.38 |
ElectrifyRate | Proportion of Electrified Village Groups | 1.00 | 0.04 |
CableTVRate | Proportion of Village Groups with Cable TV | 0.85 | 0.33 |
TransportAccess | Access to Public Transportation (1 = Yes, 0 = No) | 0.52 | 0.50 |
RoadQuality | Asphalt (1 = Yes, 0 = No) | 0.02 | 0.15 |
Concrete (1 = Yes, 0 = No) | 0.91 | 0.29 | |
Gravel (1 = Yes, 0 = No) | 0.04 | 0.19 | |
Brick or stone (1 = Yes, 0 = No) | 0.00 | 0.03 | |
Others (1 = Yes, 0 = No) | 0.03 | 0.16 | |
LeadershipScore | Local Leadership Effectiveness | 1.41 | 0.66 |
Part D: mechanism variables | |||
LandProductivity | land productivity (tons per hectare) | 5.39 | 0.31 |
LaborProductivity | Labor productivity (ten thousand yuan per person) | 2.10 | 0.86 |
AgriProcessFirms | Number of Agricultural Product Processing Enterprises | 0.11 | 0.44 |
OnlineAgriSales | Online Agricultural Product Sales (1 = Yes, 0 = No) | 0.15 | 0.36 |
LeisureTourism | Leisure Agriculture and Rural Tourism (1 = Yes, 0 = No) | 0.12 | 0.32 |
SpecialtyIndustry | Specialty Industries (1 = Yes, 0 = No) | 0.51 | 0.50 |
HSFarmlandArea | Area of High-Standard Farmland (100 mu) | 3.40 | 7.01 |
HSFarmlandProp | Proportion of High-Standard Farmland | 0.16 | 0.28 |
FacilityAgriArea | Area of Facility Agriculture (100 mu) | 0.84 | 8.20 |
FacilityAgriProp | Proportion of Facility Agriculture | 0.03 | 0.07 |
DV = ScaledFarmlandArea | DV = ScaledFarmlandProp | |||
---|---|---|---|---|
Variables | OLS | IV-2SLS | OLS | IV-2SLS |
DVI | 0.1342 *** | 0.0881 ** | 0.0052 *** | 0.0035 ** |
(0.0388) | (0.0364) | (0.0015) | (0.0015) | |
Covariates | Yes | Yes | Yes | Yes |
Constant | 2.0676 | 4.4049 | 0.0837 | 0.1691 |
(2.3976) | (3.0911) | (0.0852) | (0.1180) | |
F-statistics | 69.723 | 69.723 | ||
N | 34,133 | 34,133 | 34,133 | 34,133 |
R2 | 0.2250 | 0.2209 | 0.1801 | 0.1770 |
DV= | LandProductivity | LaborProductivity |
---|---|---|
Variables | IV-2SLS | IV-2SLS |
DVI | 0.0413 *** | 0.0589 *** |
(0.0062) | (0.0146) | |
Covariates | Yes | Yes |
Constant | 3.6785 *** | −1.3521 |
(0.3575) | (0.9228) | |
N | 34,133 | 34,133 |
R2 | 0.1538 | 0.4419 |
DV= | AgriProcessFirms | OnlineAgriSales | LeisureTourism | SpecialtyIndustry |
---|---|---|---|---|
Variables | IV-2SLS | IV-2SLS | IV-2SLS | IV-2SLS |
DVI | 0.0122 *** | 0.0139 *** | 0.0074 *** | 0.0079 * |
(0.0022) | (0.0028) | (0.0022) | (0.0041) | |
Covariates | Yes | Yes | Yes | Yes |
Constant | −0.1822 | −0.5862 *** | −0.1487 | −0.0856 |
(0.1743) | (0.1716) | (0.1355) | (0.2683) | |
N | 34,133 | 34,133 | 34,133 | 34,133 |
R2 | 0.0210 | 0.0315 | 0.0946 | 0.0448 |
HSFarmlandArea | HSFarmlandProp | FacilityAgriArea | FacilityAgriProp | |
---|---|---|---|---|
Variables | IV-2SLS | IV-2SLS | IV-2SLS | IV-2SLS |
DVI | 0.2124 *** | 0.0069 *** | 0.0881 * | 0.0010 * |
(0.0568) | (0.0022) | (0.0472) | (0.0006) | |
Covariates | Yes | Yes | Yes | Yes |
Constant | −4.4655 | −0.0869 | −4.9654 *** | −0.0151 |
(3.7292) | (0.1422) | (1.8529) | (0.0316) | |
N | 34,133 | 34,133 | 34,133 | 34,132 |
R2 | 0.0797 | 0.0730 | 0.0079 | 0.0273 |
DV = ScaledFarmlandArea | DV = ScaledFarmlandProp | |||
---|---|---|---|---|
Part A: | ||||
Border village | Non-border village | Border village | Non-border village | |
DVI | 0.0332 | 0.1070 *** | 0.0014 | 0.0041 *** |
(0.0507) | (0.0315) | (0.0020) | (0.0014) | |
Diff. p-value | 0.0000 | 0.0000 | ||
Part B: | ||||
Poor village | Non-poor village | Poor village | Non-poor village | |
DVI | 0.0414 | 0.1058 ** | 0.0012 | 0.0042 ** |
(0.0337) | (0.0498) | (0.0017) | (0.0021) | |
Diff. p-value | 0.0000 | 0.0000 | ||
Part C: | ||||
Low agricultural industrialization | High agricultural industrialization | Low agricultural industrialization | High agricultural industrialization | |
DVI | 0.0035 *** | 0.2756 ** | 0.0028 ** | 0.0127 ** |
(0.0007) | (0.1376) | (0.0013) | (0.0062) | |
Diff. p-value | 0.0000 | 0.0000 |
DV= | ProfessionalHouseholds | AgriEnterprises | FamilyFarms |
---|---|---|---|
Variables | IV-2SLS | IV-2SLS | IV-2SLS |
DVI | 0.1210 *** | 0.0193 *** | 0.0726 *** |
(0.0293) | (0.0029) | (0.0177) | |
Covariates | Yes | Yes | Yes |
Constant | −4.1060 ** | −0.6330 *** | −3.1367 *** |
(1.9311) | (0.1916) | (1.0507) | |
N | 34,133 | 34,133 | 34,133 |
R2 | 0.0411 | 0.0306 | 0.0046 |
DV= | ScaledFarmlandArea | ScaledFarmlandProp |
---|---|---|
Variables | IV-2SLS | IV-2SLS |
DigitalInfrasIndex | 0.0599 ** | 0.0024 ** |
(0.0254) | (0.0011) | |
Covariates | Yes | Yes |
Constant | 4.9507 * | 0.1907 * |
(2.9819) | (0.1133) | |
N | 34,133 | 34,133 |
R2 | 0.2116 | 0.1629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Li, M.; Cao, X. Empowering Rural Development: Evidence from China on the Impact of Digital Village Construction on Farmland Scale Operation. Land 2024, 13, 903. https://doi.org/10.3390/land13070903
Zhao S, Li M, Cao X. Empowering Rural Development: Evidence from China on the Impact of Digital Village Construction on Farmland Scale Operation. Land. 2024; 13(7):903. https://doi.org/10.3390/land13070903
Chicago/Turabian StyleZhao, Shaoyang, Mengxue Li, and Xiang Cao. 2024. "Empowering Rural Development: Evidence from China on the Impact of Digital Village Construction on Farmland Scale Operation" Land 13, no. 7: 903. https://doi.org/10.3390/land13070903
APA StyleZhao, S., Li, M., & Cao, X. (2024). Empowering Rural Development: Evidence from China on the Impact of Digital Village Construction on Farmland Scale Operation. Land, 13(7), 903. https://doi.org/10.3390/land13070903