Patterns of Urban Sprawl and Agricultural Land Loss in Sub-Saharan Africa: The Cases of the Ugandan Cities of Kampala and Mbarara
Abstract
:1. Introduction
- analyze and compare the rates of urbanization in a large urban center like Kampala against that of a smaller urban center such as Mbarara;
- assess the extent of agricultural land conversion to urban use in large and small urban centers, quantifying both the gains and losses to promote policies that balance urban growth with the need to preserve agricultural productivity;
- examine how urban expansion affects fragile ecosystems, including wetlands, forests, and other ecologically sensitive areas to understand the environmental consequences of urban sprawl on fragile ecosystems.
2. Materials and Methods
2.1. The Background of Study Sites
2.2. Data Sources
2.3. Image Classification Analysis and Accuracy Assessment
2.4. Change Analysis: Gain, Losses, and Persistence
2.4.1. Transition Matrix
2.4.2. Gains and Losses Assessment
2.4.3. Total Change on the Landscape, Net Change, and Swap
2.5. Assessment of the Principal Signals of Inter-Category Transitions in the Landscape
3. Results
3.1. LULC Classification Accuracy
3.2. Urbanization Rate in Large and Smaller Urban Centers
3.2.1. Urbanization in Large Urban Centers
3.2.2. Urbanisation in Smaller Urban Centers
3.3. The Extent of Agricultural Land Conversion to Urban Use in Large and Small Urban Centers (Gains and Losses)
3.4. Urban Expansion on Fragile Ecosystems, including Wetlands and Forests
4. General Discussion
4.1. Urbanization Rate in Large and Smaller Urban Centers
4.2. The Extent of Agricultural Land Conversion to Urban Use in Large and Small Urban Centers (Gains and Losses)
4.3. Urban Expansion on Fragile Ecosystems, Including Wetlands and Forests
4.4. Possible Measures to Solve Urban-Sprawl Problems
- Develop and enforce comprehensive urban planning and zoning regulations to manage urban expansion effectively. Unregulated urban growth leads to encroachment on ecologically sensitive areas, such as agricultural lands, wetlands, and forests. Implementing and enforcing zoning laws can help guide sustainable urban development, preserving vital natural resources and reducing environmental degradation;
- Invest in rural development programs to reduce the rural–urban migration pressure. The significant rural–urban opportunity gap drives migration to cities like Kampala and Mbarara, contributing to urban sprawl. By improving rural infrastructure, healthcare, education, and economic opportunities, policymakers can make rural areas more attractive and reduce the rate of urban migration;
4.5. Limitations of the Study
- Land-use and land-cover (LULC) image classification lacks direct information on the socio-economic and demographic factors driving these changes, requiring integration with other data sources for comprehensive analysis;
- The spatial resolution of satellite imagery limits the ability to detect fine-scale changes in land use and land cover (LULC), as most of the agricultural land in this region is fragmented and farming is conducted on a small scale. Higher-resolution images would be required for more accurate classifications, but they can be costly and less frequently available;
- Despite the relatively high overall classification accuracy, this study is limited by the use of medium (30 m) resolution Landsat imagery. Such resolution poses some challenges in terms of the ability to identify informal settlements, mixed land uses, and sub-categories of the major LULC types. There is, therefore, the need to explore the use of a much higher resolution satellite imagery, such as the 10 m Sentinel 2 data. A higher resolution imagery will not only increase the accuracy of the LULC classification but also improve our understanding of the contribution of informal settlements to the densification of relatively unplanned urban centers, such as those in this study. Also, the accuracy of our LULC classification could be improved further by using machine-learning algorithms, such as deep learning and random forest models for classification. Furthermore, there is a need to quantify the uncertainty associated with our data analyses at the pixel level to provide some sort of confidence to potential users of our maps;
- Urban centers in developing countries have several bare lands, which makes it difficult for classification algorithms to distinguish between different types of built-up areas and bare soil accurately.
5. Conclusions and Future Research
- The findings reveal a substantial expansion of built-up areas in both cities over the respective study periods. Kampala expanded nearly eightfold from 1989 to 2015, while Mbarara increased fivefold from 2002 to 2016. Notably, a significant portion of this urban growth is occurring at the expense of agricultural land, with more than half of the expansion encroaching upon such vital resources;
- Compensatory gains in agricultural land, primarily through the conversion of other land-cover categories, such as savannahs, forests, and wetlands, highlight the dynamic nature of land-use changes, particularly in peri-urban and surrounding rural areas. However, the absence of stringent regulations governing urban development, coupled with the prevalence of diverse formal and informal land-tenure systems, portends a continued encroachment of urbanization on agricultural land in the region;
- While the precise quantitative impact of urban growth on agricultural production and ecosystem integrity remains challenging to ascertain, our study underscores the critical importance of understanding both the losses and gains in agricultural land for sustainable urban growth management. Importantly, the acquisition of new agricultural land from ecologically sensitive areas like wetlands and forests raises concerns not only about productivity but also about environmental conservation. The unchecked expansion of urban areas, coupled with the indiscriminate conversion of fragile ecosystems for agricultural purposes, poses significant long-term challenges, exacerbating the already pronounced impacts of climate change and threatening regional food security. Urgent collective action by policymakers, urban planners, and scientists is imperative to ensure sustainable urban growth-management practices.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Bruin, S.; Dengerink, J.; van Vliet, J. Urbanisation as driver of food system transformation and opportunities for rural livelihoods. Food Secur. 2021, 13, 781–798. [Google Scholar] [CrossRef] [PubMed]
- Luwa, J.K.; Bamutaze, Y.; Mwanjalolo, J.-G.M.; Waiswa, D.; Pilesjö, P.; Mukengere, E.B. Impacts of land use and land cover change in response to different driving forces in Uganda: Evidence from a review. Afr. Geogr. Rev. 2021, 40, 378–394. [Google Scholar]
- Petrişor, A.-I.; Hamma, W.; Nguyen, H.D.; Randazzo, G.; Muzirafuti, A.; Stan, M.-I.; Tran, V.T.; Aştefănoaiei, R.; Bui, Q.-T.; Vintilă, D.-F.; et al. Degradation of coastlines under the pressure of urbanization and tourism: Evidence on the change of land systems from Europe, Asia and Africa. Land 2020, 9, 275. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Seto, K.C.; Woodcock, C.E.; Song, C.; Huang, X.; Lu, J.; Kaufmann, R.K. Monitoring land-use change in the Pearl River Delta using Landsat TM. Int. J. Remote Sens. 2002, 23, 1985–2004. [Google Scholar] [CrossRef]
- Xu, G.; Dong, T.; Cobbinah, P.B.; Jiao, L.; Sumari, N.S.; Chai, B.; Liu, Y. Urban expansion and form changes across African cities with a global outlook: Spatiotemporal analysis of urban land densities. J. Clean. Prod. 2019, 224, 802–810. [Google Scholar] [CrossRef]
- Bhanjee, S.; and Zhang, C.H. Mapping latest patterns of urban sprawl in Dar es Salaam, Tanzania. Pap. Appl. Geogr. 2018, 4, 292–304. [Google Scholar] [CrossRef]
- Msongaleli, B.; Nnko, H.J.; Peter, K.H.; Mubako, S. Characterizing the relationship between urban sprawl and water demand in Dodoma Urban District, Tanzania: 1992–2029. Urban Water J. 2023, 20, 1579–1591. [Google Scholar] [CrossRef]
- Kukkonen, M.O.; Muhammad, M.J.; Käyhkö, N.; Luoto, M. Urban expansion in Zanzibar City, Tanzania: Analyzing quantity, spatial patterns and effects of alternative planning approaches. Land Use Policy 2018, 71, 554–565. [Google Scholar] [CrossRef]
- Katyambo, M.M.; Ngigi, M.M. Spatial monitoring of urban growth using GIS and remote sensing: A case study of Nairobi metropolitan area, Kenya. Am. J. Geogr. Inf. Syst. 2017, 6, 64–82. [Google Scholar]
- Nyongesa, S.K.; Maghenda, M.; Siljander, M. Assessment of urban sprawl, land use and land cover changes in Voi Town, Kenya using remote sensing and landscape metrics. J. Geogr. Environ. Earth Sci. Int. 2022, 26, 50–61. [Google Scholar] [CrossRef]
- Omasire, A.K.; Kimondiu, J.M.; Kariuki, P. Urban sprawl causes and impacts on agricultural land in Wote town area of Makueni county, Kenya. Int. J. Environ. Agric. Biotechnol. 2020, 5, 631–635. [Google Scholar] [CrossRef]
- Abass, K.; Adanu, S.; Gyasi, R.M. Urban sprawl and land use/land-cover transition probabilities in peri-urban Kumasi, Ghana. West Afr. J. Appl. Ecol. 2018, 26, 118–132. [Google Scholar]
- Biney, E.; Boakye, E. Urban sprawl and its impact on land use land cover dynamics of Sekondi-Takoradi metropolitan assembly, Ghana. Environ. Chall. 2021, 4, 100168. [Google Scholar] [CrossRef]
- Osei, F.E.; Balogun, B.O.; Afrifa, C.G. Identifying and quantifying urban sprawl in the Greater Accra region of Ghana from 1985 to 2014. Int. J. Sci. Res. 2015, 4, 2793–2798. [Google Scholar]
- Kourouma, J.M.; Phiri, D.; Hudak, A.T.; Syampungani, S. Land use/cover spatiotemporal dynamics, and implications on environmental and bioclimatic factors in Chingola district, Zambia. Geomat. Nat. Hazards Risk 2022, 13, 1898–1942. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y.; Phiri, D.; Nyirenda, V.R.; Ranagalage, M. Simulating scenarios of future intra-urban land-use expansion based on the neural network–Markov model: A case study of Lusaka, Zambia. Remote Sens. 2021, 13, 942. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.M. Making Room for a Planet of Cities; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2011. [Google Scholar]
- Moisa, M.B.; Gemeda, D.O. Analysis of urban expansion and land use/land cover changes using geospatial techniques: A case of Addis Ababa City, Ethiopia. Appl. Geomat. 2021, 13, 853–861. [Google Scholar] [CrossRef]
- Murayama, Y.; Simwanda, M.; Ranagalage, M. Spatiotemporal Analysis of Urbanization Using GIS and Remote Sensing in Developing Countries. Sustainability 2021, 13, 3681. [Google Scholar] [CrossRef]
- Nduwayezu, G.; Manirakiza, V.; Mugabe, L.; Malonza, J.M. Urban Growth and Land Use/Land Cover Changes in the Post-Genocide Period, Kigali, Rwanda. Environ. Urban. ASIA 2021, 12 (Suppl. S1), S127–S146. [Google Scholar] [CrossRef]
- Obahoundje, S.; Diedhiou, A.; Ofosu, E.A.; Anquetin, S.; François, B.; Adounkpe, J.; Amoussou, E.; Kouame, Y.M.; Kouassi, K.L.; Bi, V.H.N.; et al. Assessment of spatio-temporal changes of land use and land cover over South-Western African basins and their relations with variations of discharges. Hydrology 2018, 5, 56. [Google Scholar] [CrossRef]
- Enoguanbhor, E.C.; Gollnow, F.; Nielsen, J.O.; Lakes, T.; Walker, B.B. Land cover change in the Abuja City-Region, Nigeria: Integrating GIS and remotely sensed data to support land use planning. Sustainability 2019, 11, 1313. [Google Scholar] [CrossRef]
- Koko, A.F.; Yue, W.; Abubakar, G.A.; Hamed, R.; Alabsi, A.A.N. Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomat. Nat. Hazards Risk 2021, 12, 631–652. [Google Scholar] [CrossRef]
- Sumari, N.S.; Cobbinah, P.B.; Ujoh, F.; Xu, G. On the absurdity of rapid urbanization: Spatio-temporal analysis of land-use changes in Morogoro, Tanzania. Cities 2020, 107, 102876. [Google Scholar] [CrossRef]
- Halefom, A.; Teshome, A.; Sisay, E.; Ahmad, I. Dynamics of land use and land cover change using remote sensing and GIS: A case study of Debre Tabor Town, South Gondar, Ethiopia. J. Geogr. Inf. Syst. 2018, 10, 165. [Google Scholar] [CrossRef]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Vermeiren, K.; Adiyia, B.; Loopmans, M.; Tumwine, F.R.; Van Rompaey, A. Will urban farming survive the growth of African cities: A case-study in Kampala (Uganda)? Land Use Policy 2013, 35, 40–49. [Google Scholar] [CrossRef]
- Bradshaw, T.K.; Muller, B. Impacts of Rapid Urban Growth on Farmland Conversion: Application of New Regional Land Use Policy Models and Geographical Information Systems 1. Rural Sociol. 1998, 63, 1–25. [Google Scholar] [CrossRef]
- Fazal, S. Urban expansion and loss of agricultural land-a GIS based study of Saharanpur City, India. Environ. Urban. 2000, 12, 133–149. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Alawamy, J.S.; Balasundram, S.K.; Hanif, A.H.M.; Sung, C.T.B. Detecting and analyzing land use and land cover changes in the region of Al-Jabal Al-Akhdar, Libya using time-series landsat data from 1985 to 2017. Sustainability 2020, 12, 4490. [Google Scholar] [CrossRef]
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.A.; Aheto, D.W.; Odoi, J.O.; Afitiri, A.-R. Assessing land use and land cover change in coastal urban wetlands of international importance in Ghana using Intensity Analysis. Wetl. Ecol. Manag. 2020, 28, 271–284. [Google Scholar] [CrossRef]
- Gabiri, G.; Diekkrüger, B.; Näschen, K.; Leemhuis, C.; van der Linden, R.; Majaliwa, J.-G.M.; Obando, J.A. Impact of climate and land use/land cover change on the water resources of a tropical inland valley catchment in Uganda, East Africa. Climate 2020, 8, 83. [Google Scholar] [CrossRef]
- Braimoh, A.K. Random and systematic land-cover transitions in northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
- Erenstein, O. Intensification or extensification? Factors affecting technology use in peri-urban lowlands along an agro-ecological gradient in West Africa. Agric. Syst. 2006, 90, 132–158. [Google Scholar] [CrossRef]
- Myers, G. Urbanisation in the Global South, in Urban Ecology in the Global South; Springer: Berlin/Heidelberg, Germany, 2021; pp. 27–49. [Google Scholar]
- Rawat, J.S.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef]
- Obiahu, O.H.; Yan, Z.; Uchenna, U.B. Spatiotemporal analysis of land use land cover changes and built-up expansion projection in predominantly dystric nitosol of Ebonyi state, Southeastern, Nigeria. Environ. Chall. 2021, 4, 100145. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef]
- Rafa, M.; Moyer, J.D.; Wang, X.; Sutton, P. Estimating District GDP in Uganda. 2017. Available online: https://ssrn.com/abstract=3941446 (accessed on 9 November 2020).
- Thomas, B.E. On the growth of African cities. Afr. Stud. Rev. 1970, 13, 1–8. [Google Scholar] [CrossRef]
- Omolo-Okalebo, F.; Haas, T.; Werner, I.B.; Sengendo, H. Planning of Kampala city 1903–1962: The planning ideas, values, and their physical expression. J. Plan. Hist. 2010, 9, 151–169. [Google Scholar] [CrossRef]
- HRT. The Opening Up of British East Africa. J. R. Afr. Soc. 1904, 4, 44–55. [Google Scholar]
- Uganda Bureau of Statistics 2002, “The 2002 Uganda Population and Housing Census, Household Characteristics”, Analytical Report, October 2006, Kampala, Uganda. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=764ed5f263cefa738b2ec0e3d51e6abed20d6824 (accessed on 9 November 2020).
- Prabha, K. Urban Agriculture in the Formal Economy and Land Use Planning in Kampala, Uganda. New York University: North York, ON, Canada, 1993. [Google Scholar]
- KCCA. Updating Kampala Structure Plan and Upgrading the Kampala GIS Unit; KCCA: Kampala, Uganda, 2012. [Google Scholar]
- UN-Habitat. State of the World’s Cities 2012/2013: Prosperity of Cities; Routledge: London, UK, 2013. [Google Scholar]
- Mertens, B.; Lambin, E.F. Land-cover-change trajectories in southern Cameroon. Ann. Assoc. Am. Geogr. 2000, 90, 467–494. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- ERDAS, Erdas Imagine 2014; Hexagon Geospatial: Peachtree Corners, GA, USA, 2014.
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Alo, C.A.; Pontius, R.G. Identifying systematic land-cover transitions using remote sensing and GIS: The fate of forests inside and outside protected areas of Southwestern Ghana. Environ. Plan. B Plan. Des. 2008, 35, 280–295. [Google Scholar] [CrossRef]
- Manandhar, R.; Odeh, I.O.; Pontius, R.G. Analysis of twenty years of categorical land transitions in the Lower Hunter of New South Wales, Australia. Agric. Ecosyst. Environ. 2010, 135, 336–346. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Huffaker, D.; Denman, K. Useful techniques of validation for spatially explicit land-change models. Ecol. Model. 2004, 179, 445–461. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Mas, J.F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Schuster, C. A note on the interpretation of weighted kappa and its relations to other rater agreement statistics for metric scales. Educ. Psychol. Meas. 2004, 64, 243–253. [Google Scholar] [CrossRef]
- Sim, J.; Wright, C.C. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Sakketa, T.G. Urbanisation and rural development in sub-Saharan Africa: A review of pathways and impacts. Res. Glob. 2023, 6, 100133. [Google Scholar] [CrossRef]
- Sumbo, D.K.; Anane, G.K.; Inkoom, D.K.B. ‘Peri-urbanisation and loss of arable land’: Indigenes’ farmland access challenges and adaptation strategies in Kumasi and Wa, Ghana. Land Use Policy 2023, 126, 106534. [Google Scholar] [CrossRef]
- Balandi, J.B.; Hulu, J.P.P.M.T.; Sambieni, K.R.; Sikuzani, Y.U.; Bastin, J.-F.; Musavandalo, C.M.; Nguba, T.B.; Molo, J.E.L.; Selemani, T.M.; Mweru, J.-P.M.; et al. Urban Sprawl and Changes in Landscape Patterns: The Case of Kisangani City and Its Periphery (DR Congo). Land 2023, 12, 2066. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Beauchemin, C.; Bocquier, P. Migration and urbanisation in Francophone West Africa: An overview of the recent empirical evidence. Urban Stud. 2004, 41, 2245–2272. [Google Scholar] [CrossRef]
- Rattray, A.; Ierodiaconou, D.; Monk, J.; Versace, V.; Laurenson, L. Detecting patterns of change in benthic habitats by acoustic remote sensing. Mar. Ecol. Prog. Ser. 2013, 477, 1–13. [Google Scholar] [CrossRef]
- Naab, F.Z.; Dinye, R.D.; Kasanga, R.K. Urbanisation and its impact on agricultural lands in growing cities in developing countries: A case study of Tamale in Ghana. Mod. Soc. Sci. J. 2013, 2, 256–287. [Google Scholar]
- Lasisi, M.; Popoola, A.; Adediji, A.; Adedeji, O.; Babalola, K. City expansion and agricultural land loss within the peri-urban area of Osun State, Nigeria. Ghana J. Geogr. 2017, 9, 132–163. [Google Scholar]
- Naab, F.Z.; Dinye, R.D.; Kasanga, R.K. Urbanisation and its impact on agricultural lands in growing cities in developing countries: A case study of Makurdi, Benue State Nigeria. Mod. Soc. Sci. J. 2020, 5, 41–58. [Google Scholar]
- Coulibaly, B.; Li, S. Impact of agricultural land loss on rural livelihoods in peri-urban areas: Empirical evidence from Sebougou, Mali. Land 2020, 9, 470. [Google Scholar] [CrossRef]
- Torquebiau, E. Are tropical agroforestry home gardens sustainable? Agric. Ecosyst. Environ. 1992, 41, 189–207. [Google Scholar] [CrossRef]
- Ndumu, D.B.; Baumung, R.; Hanotte, O.; Wurzinger, M.; Okeyo, M.A.; Jianlin, H.; Kibogo, H.; Sölkner, J. Genetic and morphological characterisation of the Ankole Longhorn cattle in the African Great Lakes region. Genet. Sel. Evol. 2008, 40, 467–490. [Google Scholar] [PubMed]
- McCauley, L.A.; Jenkins, D.G.; Quintana-Ascencio, P.F. Isolated wetland loss and degradation over two decades in an increasingly urbanized landscape. Wetlands 2013, 33, 117–127. [Google Scholar] [CrossRef]
- Mazeka, B.; Phinzi, K.; Sutherland, C. Monitoring Changing Land Use-Land Cover Change to Reflect the Impact of Urbanisation on Environmental Assets in Durban, South Africa, in Sustainable Urban Futures in Africa; Routledge: London, UK, 2021; pp. 132–158. [Google Scholar]
- Finn, B.M.; Cobbinah, P.B. African urbanisation at the confluence of informality and climate change. Urban Stud. 2023, 60, 405–424. [Google Scholar] [CrossRef]
- Saghir, J.; Santoro, J. Urbanization in Sub-Saharan Africa. In Meeting Challenges by Bridging Stakeholders; Center for Strategic & International Studies: Washington, DC, USA, 2018. [Google Scholar]
- Sulemana, I.; Nketiah-Amponsah, E.; Codjoe, E.A.; Andoh, J.A.N. Urbanization and income inequality in Sub-Saharan Africa. Sustain. Cities Soc. 2019, 48, 101544. [Google Scholar] [CrossRef]
- Adeeyo, A.O.; Ndlovu, S.S.; Ngwagwe, L.M.; Mudau, M.; Alabi, M.A.; Edokpayi, J.N. Wetland Resources in South Africa: Threats and Metadata Study. Resources 2022, 11, 54. [Google Scholar] [CrossRef]
1989 | 2015 | ||||||
---|---|---|---|---|---|---|---|
Urban and Built Up | Water Bodies | Wetlands | Savannah and Other | Agricultural Land | Total 1989 | Loss | |
Urban and built up | R11 | R12 | R13 | R14 | R15 | R1+ | R1+ − R11 |
Water bodies | R21 | R22 | R23 | R24 | R25 | R2+ | R2+ − R22 |
Wetlands | R31 | R32 | R33 | R34 | R35 | R3+ | R3+ − R33 |
Savannah and other | R41 | R42 | R43 | R44 | R45 | R4+ | R4+ − R44 |
Agricultural land | R42 | R43 | R44 | R45 | R46 | R5+ | R5+ − R55 |
Total 2015 | R+1 | R+2 | R+3 | R+4 | R+5 | 1 | |
Gain | R+1 − R11 | R+2 − R22 | R+3 − R33 | R+4 − R44 | R+5 − R55 |
Sensor | Date | Site | Overall Classification Accuracy | Kappa Index of Agreement |
---|---|---|---|---|
Landsat TM | 27 February 1989 | Kampala | 85.6% | 0.80 |
Landsat ETM+ | 27 November 2001 | Kampala | 90.00% | 0.87 |
Landsat OLI/TIRS | 27 February 2015 | Kampala | 89.9% | 0.86 |
Landsat ETM+ | 13 May 2002 | Mbarara | 92.0% | 0.89 |
Landsat OLI/TIRS | 5 February 2016 | Mbarara | 93.48% | 0.90 |
Total 1989 | Total 2015 | Persistence | Gain | Loss | Gain–Loss | Swap | Absolute Value of Net Change | Total Change | |
---|---|---|---|---|---|---|---|---|---|
------------------------------------------------------------%----------------------------------------------------------------------- | |||||||||
Built up | 7.14 | 55.10 | 6.44 | 48.66 | 0.69 | 70.21 | 1.39 | 47.96 | 49.35 |
Waterbody | 0.68 | 0.66 | 0.64 | 0.02 | 0.04 | 0.37 | 0.03 | 0.03 | 0.06 |
Wetland | 8.23 | 6.40 | 2.03 | 4.37 | 6.20 | 0.71 | 8.74 | 1.83 | 10.57 |
Savannah | 35.92 | 21.15 | 8.92 | 12.23 | 27.00 | 0.45 | 24.46 | 14.77 | 39.23 |
Agricultural | 48.03 | 16.69 | 8.00 | 8.69 | 40.03 | 0.22 | 17.37 | 31.34 | 48.71 |
Total 2015 | 100.00 | 100.00 | 26.04 | 73.96 | 73.96 | 1.00 | 26.00 | 47.96 | 73.96 |
Total 2002 | Total 2016 | Persistence | Gain | Loss | Gain–Loss | Total Change | Swap | Absolute Value of Net Change | |
---|---|---|---|---|---|---|---|---|---|
Built up | 6.37 | 30.95 | 5.49 | 25.45 | 0.88 | 29.02 | 26.33 | 1.75 | 24.57 |
Agricultural | 39.92 | 32.08 | 14.99 | 17.09 | 24.93 | 0.69 | 42.02 | 34.18 | 7.84 |
Grazing land | 19.71 | 23.71 | 7.38 | 16.33 | 12.32 | 1.32 | 28.65 | 24.65 | 4.00 |
Stream | 1.06 | 1.25 | 0.40 | 0.85 | 0.66 | 1.28 | 1.52 | 1.33 | 0.19 |
Savannah | 25.62 | 9.75 | 4.36 | 5.39 | 21.26 | 0.25 | 26.65 | 10.78 | 15.87 |
Other | 7.32 | 2.26 | 0.72 | 1.54 | 6.59 | 0.23 | 8.13 | 3.08 | 5.05 |
Total 2001 | 100.00 | 100.00 | 33.35 | 66.65 | 66.65 | 1.00 | 66.65 | 37.88 | 28.77 |
Land Use/Land Cover | Gain-to-Persistence (gp) | Loss-to-Persistence (lp) | Net Change-to-Persistence (np) | Swap (S) | Net Change (nc) |
---|---|---|---|---|---|
(a) Kampala 1989–2001 | |||||
Built-up | 2.34 | 0.26 | 2.08 | 2.94 | 11.78 |
Agricultural land | 0.69 | 0.96 | −0.27 | 33.88 | 6.62 |
(b) Kampala 2001–2015 | |||||
Built-up | 2.08 | 0.06 | 2.02 | 2.07 | 36.19 |
Agricultural land | 1.10 | 4.21 | −3.11 | 17.49 | 24.72 |
(c) Mbarara 2002–2016 | |||||
Built-up | 4.63 | 0.16 | 4.47 | 1.75 | 24.57 |
Agricultural | 1.14 | 1.66 | −0.52 | 34.18 | 7.84 |
2015 | Total 2001 | Loss | |||||
---|---|---|---|---|---|---|---|
Urban and Built Up | Water Bodies | Wetlands | Savannah and Other | Agricultural Land | |||
2001 | |||||||
Built up | 17.88 | 0.00 | 0.05 | 0.36 | 0.63 | 18.92 | 1.04 |
17.88 | 0.00 | 0.78 | 2.90 | 2.82 | 24.39 | 6.51 | |
17.88 | 0.01 | 0.11 | 0.39 | 0.53 | 18.92 | 1.04 | |
Waterbody | 0.02 | 0.64 | 0.02 | 0.01 | 0.00 | 0.69 | 0.05 |
0.32 | 0.64 | 0.03 | 0.11 | 0.10 | 1.20 | 0.55 | |
0.01 | 0.64 | 0.00 | 0.01 | 0.02 | 0.69 | 0.05 | |
Wetland | 2.59 | 0.01 | 2.64 | 2.40 | 1.20 | 8.83 | 6.20 |
4.05 | 0.00 | 2.64 | 1.35 | 1.32 | 9.36 | 6.73 | |
1.29 | 0.05 | 2.64 | 2.05 | 2.81 | 8.83 | 6.20 | |
Savannah and Other | 9.80 | 0.00 | 2.98 | 10.44 | 6.92 | 30.15 | 19.71 |
13.84 | 0.00 | 1.24 | 10.44 | 4.50 | 30.04 | 19.59 | |
5.34 | 0.19 | 2.49 | 10.44 | 11.68 | 30.15 | 19.71 | |
Agricultural land | 24.81 | 0.00 | 0.71 | 7.94 | 7.94 | 41.41 | 33.47 |
19.01 | 0.01 | 1.71 | 6.35 | 7.94 | 35.02 | 27.07 | |
10.81 | 0.39 | 5.04 | 17.22 | 7.94 | 41.41 | 33.47 | |
Total 2015 | 55.10 | 0.66 | 6.40 | 21.15 | 16.69 | 100.00 | 60.46 |
55.10 | 0.66 | 6.40 | 21.15 | 16.69 | 100.00 | 60.46 | |
35.32 | 1.29 | 10.29 | 30.12 | 22.99 | 100.00 | 60.46 | |
Gain | 37.22 | 0.01 | 3.76 | 10.71 | 8.75 | 60.46 | |
37.22 | 0.01 | 3.76 | 10.71 | 8.75 | 60.46 | ||
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2016 | Total 2002 | Loss | ||||||
---|---|---|---|---|---|---|---|---|
Built Up | Agricultural | Grazing Land | Stream | Savannah | Other | |||
2002 | ||||||||
Built up | 5.49 | 0.46 | 0.14 | 0.05 | 0.10 | 0.13 | 6.37 | 0.88 |
5.49 | 1.81 | 1.30 | 0.06 | 0.46 | 0.11 | 9.22 | 3.73 | |
5.49 | 0.37 | 0.18 | 0.01 | 0.24 | 0.07 | 6.37 | 0.88 | |
Agricultural | 14.72 | 14.99 | 6.46 | 0.16 | 2.86 | 0.74 | 39.92 | 24.93 |
10.85 | 14.99 | 8.12 | 0.34 | 2.89 | 0.66 | 37.86 | 22.87 | |
2.64 | 14.99 | 8.18 | 0.44 | 10.63 | 3.04 | 39.92 | 24.93 | |
Grazing land | 3.95 | 6.17 | 7.38 | 0.25 | 1.76 | 0.20 | 19.71 | 12.32 |
5.36 | 5.61 | 7.38 | 0.17 | 1.43 | 0.33 | 20.27 | 12.89 | |
0.98 | 6.13 | 7.38 | 0.16 | 3.93 | 1.12 | 19.71 | 12.32 | |
Stream | 0.16 | 0.03 | 0.14 | 0.40 | 0.27 | 0.06 | 1.06 | 0.66 |
0.29 | 0.30 | 0.22 | 0.40 | 0.08 | 0.02 | 1.30 | 0.90 | |
0.04 | 0.27 | 0.13 | 0.40 | 0.17 | 0.05 | 1.06 | 0.66 | |
Savannah | 4.44 | 8.34 | 7.72 | 0.34 | 4.36 | 0.41 | 25.62 | 21.26 |
6.96 | 7.29 | 5.21 | 0.22 | 4.36 | 0.43 | 24.47 | 20.11 | |
1.82 | 11.41 | 5.63 | 0.30 | 4.36 | 2.09 | 25.62 | 21.26 | |
Other | 2.19 | 2.10 | 1.86 | 0.06 | 0.39 | 0.72 | 7.32 | 6.59 |
1.99 | 2.08 | 1.49 | 0.06 | 0.53 | 0.72 | 6.87 | 6.15 | |
0.45 | 2.84 | 1.40 | 0.08 | 1.82 | 0.72 | 7.32 | 6.59 | |
Total 2016 | 30.95 | 32.08 | 23.71 | 1.25 | 9.75 | 2.26 | 100.00 | 66.65 |
30.95 | 32.08 | 23.71 | 1.25 | 9.75 | 2.26 | 100.00 | 66.65 | |
11.43 | 36.01 | 22.91 | 1.39 | 21.16 | 7.09 | 100.00 | 66.65 | |
Gain | 25.45 | 17.09 | 16.33 | 0.85 | 5.39 | 1.54 | 66.65 | |
25.45 | 17.09 | 16.33 | 0.85 | 5.39 | 1.54 | 66.65 | ||
25.45 | 17.09 | 16.33 | 0.85 | 5.39 | 1.54 | 66.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muchelo, R.O.; Bishop, T.F.A.; Ugbaje, S.U.; Akpa, S.I.C. Patterns of Urban Sprawl and Agricultural Land Loss in Sub-Saharan Africa: The Cases of the Ugandan Cities of Kampala and Mbarara. Land 2024, 13, 1056. https://doi.org/10.3390/land13071056
Muchelo RO, Bishop TFA, Ugbaje SU, Akpa SIC. Patterns of Urban Sprawl and Agricultural Land Loss in Sub-Saharan Africa: The Cases of the Ugandan Cities of Kampala and Mbarara. Land. 2024; 13(7):1056. https://doi.org/10.3390/land13071056
Chicago/Turabian StyleMuchelo, Ronald O., Thomas F. A. Bishop, Sabastine U. Ugbaje, and Stephen I. C. Akpa. 2024. "Patterns of Urban Sprawl and Agricultural Land Loss in Sub-Saharan Africa: The Cases of the Ugandan Cities of Kampala and Mbarara" Land 13, no. 7: 1056. https://doi.org/10.3390/land13071056
APA StyleMuchelo, R. O., Bishop, T. F. A., Ugbaje, S. U., & Akpa, S. I. C. (2024). Patterns of Urban Sprawl and Agricultural Land Loss in Sub-Saharan Africa: The Cases of the Ugandan Cities of Kampala and Mbarara. Land, 13(7), 1056. https://doi.org/10.3390/land13071056