Spatial-Temporal Heterogeneity of Ecosystem Service Value Driven by Nature-Human Activity-Policy in a Representative Fragile Karst Trough Valley, SW China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources
2.3. Dynamic Change in LUCC
2.3.1. Dynamic Degree of Land Use
2.3.2. Land-Use Transfer Matrix
2.4. ESV Accounting
2.5. Sensitivity Analysis of ESV
2.6. Driving Mechanism of Spatial-Temporal Heterogeneity of ESV
2.6.1. Geo-Detector
2.6.2. Hot- and Cold-Spots Analyses
3. Results
3.1. Dynamics of LUCC
3.1.1. Spatial-Temporal Variations of LUCC
3.1.2. Conversion between LUCC
3.2. Dynamics of ESV
3.3. Ecosystem Sensitivity Analysis
3.4. Driving Mechanism of Spatial-Temporal Heterogeneity in ESV
3.4.1. Drive Analysis Based on Geo-Detector
3.4.2. Drive Analysis Based on Hot- and Cold-Spots
4. Discussion
4.1. ESV Spatial-Temporal Heterogeneity Driven by Natural Factors
4.2. ESV Spatial-Temporal Heterogeneity Driven by Human Activities
4.3. ESV Spatial-Temporal Heterogeneity Driven by Policy Factors
4.4. Limitations and Implications of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; D’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C.; Soderqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Folke, C.; Jansson, A.; Jansson, B.O.; Kautsky, N.; et al. The value of nature and the nature of value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef]
- Qin, Z.T.; Liang, Y.; Yang, C.; Fu, Q.Y.; Chao, Y.; Liu, Z.; Yuan, Q. Externalities from restrictions: Examining the short-run effects of urban core-focused driving restriction policies on air quality. Transp. Res. Part D 2023, 119, 103723. [Google Scholar] [CrossRef]
- Roticha, B.; Kinduc, M.; Kipkulei, H.; Kibet, S.; Ojwangf, D. Impact of land use/land cover changes on ecosystem service values in the cherangany hills water tower, Kenya. Environ. Chall. 2022, 8, 100576. [Google Scholar] [CrossRef]
- Xu, Y.; Mcnamara, P.; Wu, Y.; Dong, Y. An econometric analysis of changes in arable land utilization using multinomial logit model in Pinggu district, Beijing, China. J. Environ. Manag. 2013, 128, 324–334. [Google Scholar] [CrossRef]
- Ran, C.; Bai, X.Y.; Tan, Q.; Luo, G.J.; Cao, Y.; Wu, L.H.; Chen, F.; Li, C.J.; Luo, X.L.; Liu, M.; et al. Threat of soil formation rate to health of karst ecosystem. Sci. Total Environ. 2023, 887, 163911. [Google Scholar] [CrossRef]
- Pham, K.T.; Lin, T.H. Effects of urbanization on ecosystem service values: A case study of Nha Trang, Vietnam. Land Use Policy 2023, 128, 106599. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Estimating the total ecosystem services value of Eastern Afromontane Biodiversity Hotspots in response to landscape dynamics. Environ. Sustain. Indic. 2022, 14, 100178. [Google Scholar] [CrossRef]
- Cao, Y.N.; Kong, L.Q.; Zhang, L.F.; Ouyang, Z.Y. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Basu, T.; Das, A.; Das, K.; Pereira, P. Urban expansion induced loss of natural vegetation cover and ecosystem service values: A scenario-based study in the siliguri municipal corporation (Gateway of North-East India). Land Use Policy 2023, 132, 106838. [Google Scholar] [CrossRef]
- Chen, H.S.; Liu, J.W.; Wang, K.L.; Zhang, W. Spatial distribution of rock fragments on steep hillslopes in karst region of Northwest Guangxi, China. Catena 2011, 84, 21–28. [Google Scholar] [CrossRef]
- Ding, Z.; Zheng, H.; Liu, Y.; Zeng, S.D.; Yu, P.J.; Shi, W.; Tang, X.G. Spatiotemporal patterns of ecosystem restoration activities and their effects on changes in terrestrial gross primary production in Southwest China. Remote Sens. 2021, 13, 1209. [Google Scholar] [CrossRef]
- Pei, J.; Wang, L.; Wang, X.; Niu, Z.; Kelly, M.; Song, X.-P.; Huang, N.; Geng, J.; Tian, H.; Yu, Y. Time series of landsat imagery shows vegetation recovery in two fragile karst watersheds in southwest china from 1988 to 2016. Remote Sens. 2019, 11, 2044. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Huang, X.F.; Zhou, Y.C. Factors influencing the evolution of human-driven rocky desertification in karst areas. Land Degrad. Dev. 2020, 32, 817–829. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zhang, Z.X.; Chen, X. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 2022, 144, 109514. [Google Scholar] [CrossRef]
- Zhang, L.L.; Hu, B.Q.; Zhang, Z.; Liang, G.D. Research on the spatiotemporal evolution and mechanism of ecosystem service value in the mountain-river-sea transition zone based on “production-living-ecological space”—Taking the Karst-Beibu Gulf in Southwest Guangxi, China as an example. Ecol. Indic. 2023, 148, 109889. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, K.L.; Liu, H.Y.; Zhang, C.H. Responses of spatial-emporal variation of Karst ecosystem service values to landscape pattern in northwest of Guangxi, China. Chin. Geogr. Sci. 2011, 21, 446–453. [Google Scholar] [CrossRef]
- Dai, Q.; Peng, X.; Yang, Z.; Zhao, L. Runoff and erosion processes on bare slopes in the karst rocky desertification area. Catena 2017, 152, 218–226. [Google Scholar] [CrossRef]
- Feng, T.; Chen, H.S.; Polyakov, V.O.; Wang, K.L.; Zhang, X.B.; Zhang, W. Soil erosion rates in two karst peak-cluster depression basins of Northwest Guangxi, China: Comparison of the RUSLE model with 137Cs measurements. Geomorphology 2016, 253, 217–224. [Google Scholar] [CrossRef]
- Lu, Y.H.; Yun, W.J.; Zhang, C.; Zhu, D.H.; Yang, J.Y.; Chen, Y.Y. Multi-characteristic comprehensive recognition of well-facilitied farmland based on TOPSIS and BP neural network. Trans. Chin. Soc. Agric. Mach. 2018, 49, 196–204. (In Chinese) [Google Scholar] [CrossRef]
- Hu, Z.Y.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Li, Q.; Wu, L.H.; Yang, Y.J.; Tian, S.Q.; Li, C.J.; Deng, Y.H. Changes in ecosystem service values in karst areas of China. Agric. Ecosyst. Environ. 2020, 301, 107026. [Google Scholar] [CrossRef]
- Kang, L.; Jia, Y.; Zhang, S.L. Spatiotemporal distribution and driving forces of ecological service value in the Chinese section of the “Silk Road Economic Belt”. Ecol. Indic. 2022, 141, 109074. [Google Scholar] [CrossRef]
- Xie, G.; Cao, S.; Lu, C.; Zhang, C.; Xiao, Y. Current status and future trends for ecocompensation in China. J. Resour. Ecol. 2015, 6, 355–362. [Google Scholar] [CrossRef]
- Pan, N.H.; Guan, Q.Y.; Wang, Q.Z.; Sun, Y.F.; Li, H.C.; Ma, Y.R. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Xie, L.; Wang, H.W.; Liu, S.H. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Luo, Q.L.; Zhang, X.L.; Li, Z.G.; Yang, M.; Lin, Y.H. The effects of China’s Ecological Control Line policy on ecosystem services: The case of Wuhan City. Ecol. Indic. 2018, 93, 292–301. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Wang, S. Exploring spatiotemporal changes in ecosystem-service values and hotspots in China. Sci. Total Environ. 2016, 545–546, 609–620. [Google Scholar] [CrossRef]
- Shi, Y.; Feng, C.C.; Yu, Q.R.; Guo, L. Integrating supply and demand factors for estimating ecosystem services scarcity value and its response to urbanization in typical mountainous and hilly regions of south China. Sci. Total Environ. 2021, 796, 149032. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhou, Y.C.; Wang, S.J.; Huang, X.F. Spatial distribution of stony desertification and key influencing factors on different sampling scales in small karst watersheds. Int. J. Environ. Res. Public Health 2018, 15, 743–747. [Google Scholar] [CrossRef]
- Qiu, H.; Hu, B.; Zhang, Z. Impacts of land use change on ecosystem service value based on SDGs report—Taking Guangxi as an example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.X.; Zhang, P.P.; Wu, F.; Wang, Y.Q.; Xu, C.; Zhang, L.K.; An, S.S.; Kuzyakov, K. Large-scale ecosystem carbon stocks and their driving factors across Loess Plateau. Carbon Neutrality 2023, 2, 2–16. [Google Scholar] [CrossRef]
- Cui, X.W.; Liang, J.; Lu, W.Z.; Liu, F.; Lin, G.X.; Xu, F.H.; Luo, Y.Q.; Lin, G.H. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China. Agric. For. Meteorol. 2018, 249, 71–80. [Google Scholar] [CrossRef]
- Gu, F.X.; Zhang, Y.D.; Huang, M.; Tao, B.; Liu, Z.J.; Hao, M.; Guo, R. Climate-driven uncertainties in modeling terrestrial ecosystem net primary productivity in China. Agric. For. Meteorol. 2017, 246, 123–132. [Google Scholar] [CrossRef]
- Wang, Y.H.; Dai, E.F.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Li, W.S.; Wang, L.Q.; Yang, X.; Liang, T.; Zhang, Q.; Liao, X.Y.; White, J.R.; Rinklebe, J. Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Sci. Total Environ. 2022, 829, 154595. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, A.O.; Deng, X.Z.; Olatunji, A.O.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.M.; Fang, C.L.; Mu, X.F.; Chen, D. Coupling and coordination analysis of urbanization and ecosystem service value in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 137, 108782. [Google Scholar] [CrossRef]
- Han, Z.; Song, W.; Deng, X.Z. Responses of Ecosystem Service to Land Use Change in Qinghai Province. Energies 2016, 9, 303. [Google Scholar] [CrossRef]
- Wang, A.Y.; Liao, X.Y.; Tong, Z.J.; Du, W.L.; Zhang, J.Q.; Liu, X.P.; Liu, M.S. Spatial-temporal dynamic evaluation of the ecosystem service value from the perspective of “production-living-ecological” spaces: A case study in Dongliao River Basin, China. J. Clean. Prod. 2022, 333, 130218. [Google Scholar] [CrossRef]
- Yang, G.F.; Ge, Y.; Xue, H.; Yang, W.; Shi, Y.; Peng, C.H.; Du, Y.Y.; Fan, X.; Ren, Y.; Chang, J. Using ecosystem service bundles to detect trade-offs and synergies across urban-rural complexes. Landsc. Urban Plan. 2015, 136, 110–121. [Google Scholar] [CrossRef]
- Hou, L.; Wu, F.Q.; Xie, X.L. The spatial characteristics and relationships etween landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Liang, X.Y.; Li, Y.B.; Zhou, Y.L. Study on the abandonment of sloping farmland in Fengjie County, Three Gorges Reservoir Area, a mountainous area in China. Land Use Policy 2020, 97, 104760. [Google Scholar] [CrossRef]
Ecosystem Service Type | Ecosystem Service Function | ESV Equivalent Value Coefficient (Million yuan/ha) | ||||
---|---|---|---|---|---|---|
Cropland | Forestland | Grassland | Water Body | Construction Land | ||
Provision | Food Production | 865.96 | 197.88 | 188.08 | 626.94 | 0.00 |
Raw Material Production | 192.00 | 454.53 | 274.28 | 180.24 | 0.00 | |
Water Supply | 1038.36 | 235.10 | 152.82 | 6496.63 | 0.00 | |
Regulate | Gas Regulation | 697.47 | 1494.85 | 971.75 | 603.43 | 0.00 |
Climate Regulation | 364.41 | 4472.80 | 2566.52 | 1794.60 | 0.00 | |
Purification of the Environment | 105.80 | 1310.69 | 846.36 | 4349.37 | 0.00 | |
Water Regulation | 1171.59 | 2927.01 | 1880.81 | 80,122.45 | 0.00 | |
Support | Soil Formation and Retention | 407.51 | 1820.07 | 1183.34 | 728.81 | 0.00 |
Maintenance of Nutrient Circulation | 121.47 | 139.10 | 90.12 | 54.86 | 0.00 | |
Biodiversity | 133.22 | 1657.46 | 1073.63 | 1998.36 | 0.00 | |
Culture | Recreation, Culture, Tourism | 58.78 | 726.85 | 474.12 | 1481.14 | 0.00 |
Year | Cropland | Forestland | Grassland | Water Body | Construction Land | |||||
---|---|---|---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ha | % | ha | % | |
1990 | 85,165.07 | 16.46 | 397,986.95 | 76.94 | 33,216.60 | 6.42 | 694.91 | 0.13 | 236.47 | 0.05 |
2000 | 171,908.01 | 33.23 | 327,561.02 | 63.32 | 15,489.88 | 2.99 | 1931.54 | 0.37 | 409.55 | 0.08 |
2010 | 171,128.40 | 33.08 | 327,990.84 | 63.40 | 15,553.43 | 3.01 | 1881.94 | 0.36 | 745.39 | 0.14 |
2020 | 158,070.09 | 30.56 | 335,327.56 | 64.82 | 15,362.05 | 2.97 | 2743.00 | 0.53 | 5797.30 | 1.12 |
Year | Cropland | Forestland | Grassland | Water Body | Construction Land | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ESV (Million Yuan) | % | ESV (Million Yuan) | % | ESV (Million Yuan) | % | ESV (Million Yuan) | % | ESV (Million Yuan) | % | ESV (Million Yuan) | % | |
1990 | 439.16 | 6.30 | 6143.47 | 88.10 | 322.26 | 4.62 | 68.41 | 0.98 | 0.00 | 0.00 | 6973.29 | 100.00 |
2000 | 886.45 | 14.11 | 5056.35 | 80.47 | 150.28 | 2.39 | 190.13 | 3.03 | 0.00 | 0.00 | 6283.21 | 100.00 |
2010 | 882.43 | 14.05 | 5062.98 | 80.60 | 150.90 | 2.40 | 185.25 | 2.95 | 0.00 | 0.00 | 6281.56 | 100.00 |
2020 | 815.10 | 12.72 | 5176.23 | 80.75 | 149.04 | 2.32 | 270.01 | 4.21 | 0.00 | 0.00 | 6410.38 | 100.00 |
Ecosystem Service Type | Ecosystem Service Function | 1990 | 2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|---|
Million Yuan | % | Million Yuan | % | Million Yuan | % | Million Yuan | % | ||
Provision | Food Production | 159.95 | 2.29 | 219.23 | 3.49 | 221.71 | 3.48 | 208.07 | 3.25 |
Raw Material Production | 207.30 | 2.97 | 187.53 | 2.98 | 189.66 | 2.99 | 187.54 | 2.93 | |
Water Supply | 193.28 | 2.77 | 272.09 | 4.33 | 275.16 | 4.31 | 263.28 | 4.11 | |
Regulate | Gas Regulation | 689.75 | 9.89 | 629.27 | 10.02 | 636.40 | 10.02 | 628.33 | 9.80 |
Climate Regulation | 1905.02 | 27.32 | 1579.28 | 25.13 | 1597.20 | 25.17 | 1602.07 | 24.99 | |
Purification of the Environment | 564.49 | 8.10 | 471.44 | 7.50 | 476.79 | 7.51 | 481.17 | 7.51 | |
Water Regulation | 1398.99 | 20.06 | 1350.14 | 21.49 | 1365.39 | 21.43 | 1414.16 | 22.06 | |
Support | Soil Formation and Retention | 802.02 | 11.50 | 689.69 | 10.98 | 697.51 | 10.99 | 695.09 | 10.84 |
Maintenance of Nutrient Circulation | 29.07 | 0.42 | 35.42 | 0.56 | 35.82 | 0.56 | 67.42 | 1.05 | |
Biodiversity | 710.98 | 10.20 | 589.38 | 9.38 | 596.06 | 9.39 | 598.87 | 9.34 | |
Culture | Recreation, Culture, Tourism | 312.43 | 4.48 | 259.74 | 4.13 | 262.69 | 4.14 | 264.39 | 4.12 |
Total | 6973.29 | 100.00 | 6283.21 | 100.00 | 6281.56 | 100.00 | 6410.38 | 100.00 |
1990 | 2000 | 2010 | 2020 | |
---|---|---|---|---|
Cropland (VC ± 50%) | 0.062977 | 0.141082 | 0.140479 | 0.127153 |
Forestland (VC ± 50%) | 0.880999 | 0.804740 | 0.806007 | 0.807476 |
Grassland (VC ± 50%) | 0.046213 | 0.023918 | 0.024023 | 0.023250 |
Water body (VC ± 50%) | 0.009810 | 0.030260 | 0.029491 | 0.042121 |
Construction land (VC ± 50%) | 0 | 0 | 0 | 0 |
Year | NDVI | NPP | Altitude | Slope Degree | Slope Aspect | Lithology | Soil Type | Population Density | |
---|---|---|---|---|---|---|---|---|---|
1990 | q statistic (%) | 1.83 | 1.83 | 1.49 | 5.15 | 3.05 | 0.84 | 10.34 | 13.05 |
p value | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | |
2000 | q statistic (%) | 0.79 | 0.79 | 8.94 | 6.09 | 0.43 | 1.75 | 7.85 | 7.44 |
p value | 0.69 | 0.69 | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | 0.00 | |
2010 | q statistic (%) | 8.29 | 3.08 | 9.44 | 5.83 | 0.27 | 1.44 | 7.80 | 6.21 |
p value | 0.00 | 0.00 | 0.00 | 0.00 | 0.67 | 0.00 | 0.00 | 0.00 | |
2020 | q statistic (%) | 7.36 | 2.58 | 5.52 | 4.97 | 0.39 | 0.60 | 6.02 | 4.16 |
p value | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 |
NDVI | NPP | Altitude | Slope Degree | Slope Aspect | Lithology | Soil Type | Population Density | |
---|---|---|---|---|---|---|---|---|
NDVI | 0.05 | |||||||
NPP | 0.07 | 0.02 | ||||||
Altitude | 0.14 | 0.11 | 0.06 | |||||
Slope degree | 0.11 | 0.09 | 0.14 | 0.06 | ||||
Slope aspect | 0.07 | 0.05 | 0.09 | 0.08 | 0.01 | |||
Lithology | 0.08 | 0.05 | 0.08 | 0.07 | 0.03 | 0.01 | ||
Soil type | 0.16 | 0.14 | 0.19 | 0.15 | 0.11 | 0.12 | 0.08 | |
Population density | 0.14 | 0.11 | 0.14 | 0.13 | 0.10 | 0.10 | 0.17 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, C.; Zhang, G.; Li, T.; He, B.; Zhang, D. Spatial-Temporal Heterogeneity of Ecosystem Service Value Driven by Nature-Human Activity-Policy in a Representative Fragile Karst Trough Valley, SW China. Land 2024, 13, 256. https://doi.org/10.3390/land13020256
Zeng C, Zhang G, Li T, He B, Zhang D. Spatial-Temporal Heterogeneity of Ecosystem Service Value Driven by Nature-Human Activity-Policy in a Representative Fragile Karst Trough Valley, SW China. Land. 2024; 13(2):256. https://doi.org/10.3390/land13020256
Chicago/Turabian StyleZeng, Cheng, Gaoning Zhang, Tianyang Li, Binghui He, and Dengyu Zhang. 2024. "Spatial-Temporal Heterogeneity of Ecosystem Service Value Driven by Nature-Human Activity-Policy in a Representative Fragile Karst Trough Valley, SW China" Land 13, no. 2: 256. https://doi.org/10.3390/land13020256
APA StyleZeng, C., Zhang, G., Li, T., He, B., & Zhang, D. (2024). Spatial-Temporal Heterogeneity of Ecosystem Service Value Driven by Nature-Human Activity-Policy in a Representative Fragile Karst Trough Valley, SW China. Land, 13(2), 256. https://doi.org/10.3390/land13020256