A Method for Predicting the Surface Subsidence Duration and the Maximum Subsidence Velocity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Weibull Time Function Model
2.3. Establishment of Prediction Model
2.3.1. Prediction Model of the Surface Subsidence Duration
2.3.2. Prediction Model of the Surface Maximum Subsidence Velocity
2.3.3. Determination of Model Parameters
3. Results and Analysis
3.1. Analysis of the Prediction Results of the Surface Subsidence Duration
3.2. Analysis of the Prediction Results of the Surface Maximum Subsidence Velocity
Number | Name of Mining Area (Working Face Number) | c | Vmax (mm·d−1) | Relative Error (%) | |
---|---|---|---|---|---|
Measured Value | Predicted Value | ||||
1 | Mazhuang Mine (102) | 6.203 × 10−7 | 32 | 24.7 | 22.8 |
2 | Wuyang Mine (7305) | 1.186 × 10−6 | 61 | 51.5 | 15.6 |
3 | Erkuang Mine (1404) | 1.551 × 10−7 | 11 | 10.7 | 2.7 |
4 | Gengcun Mine (11,061) | 3.012 × 10−7 | 11.2 | 13.9 | 24.1 |
5 | Fengfeng Mine (0252) | 1.066 × 10−6 | 54.2 | 45.5 | 16.1 |
6 | Wangzhuang Mine (6206) | 3.177 × 10−6 | 144.3 | 127.1 | 11.9 |
7 | Sima Mine (1101) | 1.344 × 10−5 | 241 | 231.4 | 4.0 |
8 | Changcun Mine (S6-7) | 1.807 × 10−6 | 76.8 | 83.2 | 8.3 |
9 | Dongpo Mine (914) | 1.020 × 10−6 | 181.7 | 204.4 | 12.5 |
10 | Xiadian Mine (3111) | 5.539 × 10−7 | 74 | 74 | 0.0 |
11 | Xinyuan Mine (1101) | 5.555 × 10−6 | 205 | 200.8 | 2.0 |
12 | Tianzhu Mine (3229) | 2.824 × 10−7 | 21.5 | 18.9 | 12.1 |
13 | Xiaobaodang Mine (112,201) | 9.358 × 10−5 | 267.8 | 263.3 | 1.7 |
14 | Daliuta Mine (22,201) | 3.630 × 10−3 | 643.3 | 632.4 | 1.7 |
15 | Wuyang Mine (7806) | 2.979 × 10−7 | 64.3 | 56.1 | 12.8 |
Standard deviation (mm·d−1) | 10.0 | ||||
Relative standard deviation (%) | 1.6% |
3.3. Related Influencing Factors Analysis
3.3.1. Influence of the Coal Seam Thickness
3.3.2. Influence of the Mining Speed
3.3.3. Influence of the Mining Depth
4. Discussion
4.1. Comparison of the Surface Subsidence Duration Prediction Under Different Methods
4.2. Comparison of the Surface Maximum Subsidence Velocity Prediction Under Different Methods
4.3. The Movement and Deformation Process of the Overlying Strata and Surface
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, K.Z.; Zheng, M.N.; Zhang, H.Z.; Fan, H.D.; Tan, Z.X. Research status and prospect of secondary subsidence in closed mine. Coal Sci. Technol. 2022, 50, 10–20. [Google Scholar]
- Guzy, A.; Witkowski, W.T. Land subsidence estimation for aquifer drainage induced by underground mining. Energies 2021, 14, 4658. [Google Scholar] [CrossRef]
- Krawczyk, A.; Grzybek, R. An evaluation of processing InSAR Sentinel-1A/B data for correlation of mining subsidence with mining induced tremors in the Upper Silesian Coal Basin (Poland). E3S Web Conf. 2018, 26, 00003. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Lian, X.G.; Yan, Y.G.; Zhu, Y.H.; Dai, H.Y. Study on the development law of mining-induced ground cracks under gully terrain. Remote Sens. 2022, 14, 5985. [Google Scholar] [CrossRef]
- Peng, S.S. Surface Subsidence Engineering; The Society for Mining, Metallurgy, and Exploration, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Rurek, M.; Gonia, A.; Hojan, M. Environmental and socio-economic effects of underground brown coal mining in PiłaMłyn (Poland). Land 2022, 11, 219. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, Y.; Yin, X. A study on the movement and deformation law of overlying strata and the self-healing characteristics of ground fissures in non-pillar mining in the aeolian sand area. Sustainability 2023, 15, 15136. [Google Scholar] [CrossRef]
- Williams, S.; Bock, Y.; Pang, P. Integrated satellite interferometry, tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. Geophysics 1998, 103, 27051–27067. [Google Scholar] [CrossRef]
- Malinowska, A.; Hejmanowski, R. Building damage risk assessment on mining terrains in Poland with GIS application. Int. J. Rock. Mech. Min. Sci. 2010, 47, 238–245. [Google Scholar] [CrossRef]
- Sun, C.; Xu, N.Z.; Liu, Y.X.; Liu, G.; Gao, C. Prediction of dynamic subsidence of ground point under loose stratum based on two-factor time function. Rock. Soil. Mech. 2017, 38, 821–826. [Google Scholar]
- An, S.L.; Li, Y.H.; Wang, X.P.; Zhou, D.W.; An, Y.F.; Bi, B. Study on prediction method of surface movement duration in thick alluvial mining area. Coal Sci. Technol. 2022, 50, 24–31. [Google Scholar]
- Troncone, A.; Pugliese, L.; Conte, E. Analysis of an excavation-induced landslide in stiff clay using the material point method. Eng. Geol. 2022, 296, 106479. [Google Scholar] [CrossRef]
- Ghabraie, B.; Ren, G.; Barbato, J.; Smith, J.V. A predictive methodology for multi-seam mining induced subsidence. Int. J. Rock. Mech. Min. Sci. 2017, 93, 280–294. [Google Scholar] [CrossRef]
- Loupasakis, C.; Angelitsa, V.; Rozos, D.; Spanou, N. Mining geohazards-land subsidence caused by the dewatering of opencast coal mines, the case study of the Amyntaio coal mine, Florida, Greece. Nat. Hazards 2014, 70, 675–691. [Google Scholar] [CrossRef]
- Vervoort, A. The time duration of the effects of total extraction mining methods on surface movement. Energies 2020, 13, 4107. [Google Scholar] [CrossRef]
- Vervoort, A. Surface movement above an underground coal longwall mine after closure. Nat. Hazards Earth Syst. Sci. 2016, 16, 2107–2121. [Google Scholar] [CrossRef]
- Modeste, G.; Doubre, C.; Masson, F. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 10239. [Google Scholar] [CrossRef]
- Tajduś, K.; Sroka, A.; Misa, R.; Hager, S.; Rusek, J.; Dudek, M.; Wollnik, F. Analysis of mining-induced delayed surface subsidence. Minerals 2021, 11, 1187. [Google Scholar] [CrossRef]
- Dudek, M.; Sroka, A.; Tajduś, K.; Misa, R.; Mrocheń, D. Assessment and duration of the surface subsidence after the end of mining operations. Energies 2022, 15, 8711. [Google Scholar] [CrossRef]
- Białek, J.; Wesołowski, M.; Mielimąka, R.; Sikora, P. Deformations of mining terrain caused by the partial exploitation in the aspect of measurements and numerical modeling. Sustainability 2020, 12, 5072. [Google Scholar] [CrossRef]
- Kowalski, A.; Białek, J.; Rutkowski, T. Caulking of goafs formed by cave-in mining and its impact on surface subsidence in hard coal mines. Arch. Min. Sci. 2021, 66, 85–100. [Google Scholar]
- Polanin, P.; Kowalski, A.; Walentek, A. Numerical simulation of subsidence caused by roadway system. Arch. Min. Sci. 2019, 64, 385–397. [Google Scholar]
- State Administration of Work Safety; National Coal Ming Safety Administration; National Energy Administration; National Railway Administration. Regulations of Coal Mining Under Buildings, Water Bodies, Railway and Safety Pillar Design; Coal Industry Press: Beijing, China, 2017. [Google Scholar]
- Zhang, G.W.; Wei, Y.J.; Zhu, Q. Study on the calculation method of surface movement time. In Proceedings of the National “Three Unders” Coal Mining Academic Conference: Professional Committee of Mine Surveying of China Coal Society (China Coal Society), Chengdu, China, 1 October 2012; pp. 92–96. [Google Scholar]
- Zheng, Z.G.; Teng, Y.H. Ground surface rock strata movement parameters of thick loose strata with fully mechanized top coal caving. Coal Min. Technol. 2016, 21, 22–25. [Google Scholar]
- Li, C.Y.; Gao, Y.G.; Cui, X.M.; Yuan, D.B.; He, R. Spatiotemporal evolution of surface subsidence induced by fully mechanized thick coal underground mining in Yunjialing colliery. J. Min. Saf. Eng. 2019, 36, 37–43, 50. [Google Scholar]
- Chen, J.J.; Liu, S.W.; Yan, W.T. Construction of skew prediction model for surface subsidence velocity in horizontal coal seam mining. J. Henan Polytech. Univ. 2023, 42, 71–75. [Google Scholar]
- Gonzalez-Nicieza, C.; Alvarez-Fernandez, M.I.; Menendez-Diaz, A.; Alvarez-Vigil, A.E. The influence of time on subsidence in the Central Asturian Coalfield. Bull. Eng. Geol. Environ. 2007, 66, 319–329. [Google Scholar] [CrossRef]
- Zhang, L.L.; Cheng, Y.; Yao, Z.S.; Wang, X.J. Prediction of maximum surface subsidence velocity based on improved Knothe time model. Rock. Soil. Mech. 2023, 44, 1111–1119. [Google Scholar]
- Li, Q.S.; Guo, J.T.; Dai, H.Y. Surface dynamic subsidence prediction method based on mining sufficiency degree. J. China Coal Soc. 2020, 45, 160–167. [Google Scholar]
- Knothe, S. Effect of time on formation of basin subsidence. Arch. Min. Steel Ind. 1953, 1, 1–7. [Google Scholar]
- Li, C.Y.; Gao, Y.G.; Cui, X.M. Progressive subsidence prediction of ground surface based on the normal distribution time function. Rock. Soil. Mech. 2016, 37, 108–116. [Google Scholar]
- Saeidi, A.; Deck, O.; Heib, A.M.; Rouleau, A. Adjusting the influence function method for subsidence prediction. Key Eng. Mater. 2013, 553, 59–66. [Google Scholar] [CrossRef]
- Taherynia, M.; Aghda, S.; Ghazifard, A.; Moradi, E. Prediction of subsidence over oil and gas fields with use of influence functions (case study: South pars gas field, Iran). Iran. J. Sci. Technol. Trans. A Sci. 2017, 41, 375–381. [Google Scholar] [CrossRef]
- Roser, J.; Potocnik, D.; Vulic, M. Analysis of Dynamic Surface Subsidence at the Underground Coal Mining Site in Velenje. Minerals 2018, 8, 74. [Google Scholar] [CrossRef]
- Bo, H.; Lu, G.; Li, H.; Guo, G.; Li, Y. Development of a dynamic prediction model for underground coal mining-induced ground subsidence based on the Hook function. Remote Sens. 2024, 16, 377. [Google Scholar] [CrossRef]
- Nie, L.; Wang, H.; Xu, Y. Application of the arctangent function model in the prediction of ground mining subsidence deformation: A case study from Fushun City, Liaoning Province, China. Bull. Eng. Geol. Environ. 2017, 76, 1383–1398. [Google Scholar] [CrossRef]
- Liu, D.H.; Deng, N.G.; Yao, T.; Shang, H. Study on parameters of Weibull time function model based on sited measured mining subsidence data. Coal Sci. Technol. 2021, 49, 152–158. [Google Scholar]
- Zhang, Y.J.; Yan, Y.G.; Long, S.F.; Zhu, Y.H.; Dai, H.Y.; Kong, J.Y. Dynamic prediction model of mining subsidence combined with improved Weibull time function. Rock. Soil. Mech. 2024, 45, 1824–1834. [Google Scholar]
- Cui, X.; Zhao, Y.; Wang, G.; Zhang, B.; Li, C. Calculation of residual surface subsidence above abandoned longwall coal mining. Sustainability 2020, 12, 1528. [Google Scholar] [CrossRef]
- Cui, X.; Miao, X.; Wang, J.; Yang, S.; Liu, H.; Song, Y.; Liu, H.; Hu, X. Improved prediction of differential subsidence caused by underground mining. Int. J. Rock. Mech. Min. Sci. 2000, 37, 615–627. [Google Scholar] [CrossRef]
- Cui, X.M.; Wang, J.C.; Liu, Y.S. Prediction of progressive surface subsidence above longwall coal mining using a time function. Int. J. Rock. Mech. Min. Sci. 2001, 38, 1057–1063. [Google Scholar] [CrossRef]
- He, G.Q.; Yang, L.; Ling, G.D.; Jia, F.C.; Hong, D. Mining Subsidence Science; China University of Mining and Technology Press: Xuzhou, China, 1989. [Google Scholar]
- Cheng, H.; Zhang, L.L.; Guo, L.H.; Wang, X.J.; Peng, S.L. A new dynamic prediction model for underground mining subsidence based on inverse function of unstable creep. Adv. Civil. Eng. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, H.; Yao, Z.; Wang, X. Application of the improved Knothe time function model in the prediction of ground mining subsidence: A case study from Heze city, Shandong province, China. Appl. Sci. 2020, 10, 3147. [Google Scholar] [CrossRef]
- Wang, B.; Xu, J.; Xuan, D. Time function model of dynamic surface subsidence assessment of grout-injected overburden of a coal mine. Int. J. Rock. Mech. Min. Sci. 2018, 104, 1–8. [Google Scholar] [CrossRef]
- Nie, L.; Wang, H.F.; Xu, Y.; Li, Z.C. A new prediction model for mining subsidence deformation, the arc tangent function model. Nat. Hazards 2015, 75, 2185–2198. [Google Scholar] [CrossRef]
- Deng, K.Z.; Tan, Z.X.; Jiang, Y.; Dai, H.Y.; Xu, L.J. Deformation Monitoring and Mining Subsidence; China University of Mining and Technology Press: Xuzhou, China, 2014. [Google Scholar]
- Zhu, Y.H.; Yan, Y.G.; Zhang, Y.J.; Zhang, W.Q.; Kong, J.Y.; Dai, A.J. Study on the evolution law of overlying strata structure in stope based on “space–air–ground” integrated monitoring network and discrete element. Drones 2023, 7, 309. [Google Scholar] [CrossRef]
Number | Name of Mining Area (Working Face Number) | Mining Depth (m) | Maximum Subsidence (mm) | Mining Rate (m·d−1) | Coal Seam Thickness (m) | Surface Subsidence Duration (d) |
---|---|---|---|---|---|---|
1 | Dongpang Mine (2107) | 264 | 3290 | 1.97 | 3.5 | 426 |
2 | Yangdong Mine (8266) | 743 | 879 | 2.90 | 5.5 | 562 |
3 | Yangquan Mine (3) | 240 | 1909 | 1.37 | 2.3 | 385 |
4 | Guozhuang Mine (2309) | 390 | 4620 | 2.60 | 6.0 | 357 |
5 | Pangzhuang Mine (102) | 99 | 1840 | 1.30 | 2.0 | 291 |
6 | Yangcun Mine (16) | 285 | 1250 | 1.93 | 1.3 | 344 |
7 | Guqiao Mine (1414) | 725 | 2047 | 6.20 | 3.0 | 423 |
8 | Dingji Mine (1141) | 674 | 3410 | 5.00 | 3.1 | 416 |
9 | Pansidong Mine (1111) | 477 | 3325 | 2.80 | 3.5 | 452 |
10 | Zhujidong Mine (1111) | 920 | 1200 | 4.20 | 1.8 | 438 |
11 | Panji Mine (14,021) | 408 | 1324 | 2.90 | 1.9 | 362 |
12 | Panji Mine (1552) | 630 | 2387 | 1.30 | 3.1 | 918 |
13 | Yangquan Mine (8110) | 593 | 1770 | 2.00 | 7.1 | 746 |
14 | Wannian Mine (132,153) | 528 | 900 | 1.60 | 4.0 | 541 |
15 | Yunjialing Mine (12,305) | 570 | 750 | 2.45 | 4.2 | 428 |
Number | Name of Mining Area (Working Face Number) | Mining Depth (m) | Thickness of Loose Layer (m) | Bedrock Thickness (m) | Maximum Subsidence (mm) | Mining Rate (m·d−1) | Coal Seam Thickness (m) | Maximum Subsidence Velocity (mm·d−1) |
---|---|---|---|---|---|---|---|---|
1 | Mazhuang Mine (102) | 105 | 32 | 73 | 1566 | 0.83 | 1.8 | 32.0 |
2 | Wuyang Mine (7305) | 213 | 22 | 191 | 2160 | 2.53 | 3.0 | 61.0 |
3 | Erkuang Mine (1404) | 178 | 24 | 154 | 1036 | 1.10 | 1.4 | 11.0 |
4 | Gengcun Mine (11,061) | 280 | 17.4 | 262.6 | 1572 | 2.27 | 2.4 | 11.2 |
5 | Fengfeng Mine (0252) | 133 | 7 | 126 | 2016 | 1.60 | 2.4 | 54.2 |
6 | Wangzhuang Mine (6206) | 316 | 160 | 156 | 4883 | 3.20 | 6.5 | 144.3 |
7 | Sima Mine (1101) | 240 | 170 | 70 | 5714 | 2.67 | 6.7 | 241.0 |
8 | Changcun Mine (S6-7) | 358 | 132 | 226 | 3800 | 3.66 | 6.2 | 76.8 |
9 | Dongpo Mine (914) | 265 | 50 | 215 | 11,127 | 2.77 | 14.4 | 181.7 |
10 | Xiadian Mine (3111) | 420 | 19 | 401 | 4860 | 4.16 | 6.0 | 74.0 |
11 | Xinyuan Mine (1101) | 440 | 285 | 155 | 6500 | 4.20 | 8.2 | 205.0 |
12 | Tianzhu Mine (3229) | 360 | 12 | 348 | 1523 | 2.93 | 6.3 | 21.5 |
13 | Xiaobaodang Mine (112,201) | 302 | 72 | 230 | 3585 | 12.00 | 5.8 | 267.8 |
14 | Daliuta Mine (22,201) | 73 | 12 | 61 | 2803 | 9.60 | 4.0 | 643.3 |
15 | Wuyang Mine (7806) | 335 | 17 | 318 | 4455 | 2.73 | 5.5 | 64.3 |
No.22 | No.C39 | ||
---|---|---|---|
Working face number | 313 | Working face number | 3214 |
Mining size | 1140 × 230 m2 | Mining size | 1214 × 156 m2 |
Coal seam thickness | 5.2 m | Coal seam thickness | 1.98 m |
Mining depth | 593 m | Mining depth | 535.5 m |
Mining speed | 2.5 m/d | Mining speed | 2.5 m/d |
Dip angle | 2° | Dip angle | 5.5° |
Number | Name of Mining Area (Working Face Number) | c | t (d) | Relative Error (%) | |
---|---|---|---|---|---|
Measured Value | Predicted Value | ||||
1 | Dongpang Mine (2107) | 1.511 × 10−7 | 426 | 379 | 11.0 |
2 | Yangdong Mine (8266) | 1.837 × 10−8 | 562 | 523 | 6.9 |
3 | Yangquan Mine (3) | 6.292 × 10−8 | 385 | 430 | 11.7 |
4 | Guozhuang Mine (2309) | 1.052 × 10−7 | 357 | 407 | 14.0 |
5 | Pangzhuang Mine (102) | 9.588 × 10−7 | 291 | 288 | 1.0 |
6 | Yangcun Mine (16) | 1.113 × 10−7 | 344 | 383 | 11.3 |
7 | Guqiao Mine (1414) | 2.369 × 10−7 | 423 | 348 | 17.7 |
8 | Dingji Mine (1141) | 1.490 × 10−7 | 416 | 380 | 8.7 |
9 | Pansidong Mine (1111) | 6.947 × 10−8 | 452 | 432 | 4.4 |
10 | Zhujidong Mine (1111) | 3.061 × 10−8 | 438 | 481 | 9.8 |
11 | Panji Mine (14,021) | 1.296 × 10−7 | 362 | 375 | 3.6 |
12 | Panji Mine (1552) | 2.299 × 10−9 | 918 | 882 | 3.9 |
13 | Yangquan Mine (8110) | 1.141 × 10−8 | 746 | 600 | 19.6 |
14 | Wannian Mine (132,153) | 8.048 × 10−9 | 541 | 623 | 15.2 |
15 | Yunjialing Mine (12,305) | 2.515 × 10−8 | 428 | 487 | 13.8 |
Standard deviation (d) | 61 | ||||
Relative standard deviation (%) | 6.6% |
Mining Depth (m) | Soft Rock | Medium-Hard Rock | Hard Rock |
---|---|---|---|
<100 | 1~3 | 2~4 | 3~5 |
100~300 | 3~5 | 4~6 | 5~7 |
300~500 | 5~7 | 6~8 | 7~9 |
500~800 | 7~10 | 8~11 | 9~12 |
>800 | >10 | >11 | >12 |
Number | Name of Mining Area (Working Face Number) | Measured Value (d) | Method of This Paper | Empirical Formula (1) | Empirical Formula (2) | |||
---|---|---|---|---|---|---|---|---|
t (d) | Differential Value (d) | t (d) | Differential Value (d) | t (d) | Differential Value (d) | |||
1 | Dongpang Mine (2107) | 426 | 379 | 47 | 564 | 138 | 660 | 234 |
2 | Yangdong Mine (8266) | 562 | 523 | 39 | 2511 | 1949 | 1587 | 1025 |
3 | Yangquan Mine (3) | 385 | 430 | 45 | 738 | 353 | 600 | 215 |
4 | Guozhuang Mine (2309) | 357 | 407 | 50 | 1050 | 693 | 975 | 618 |
5 | Pangzhuang Mine (102) | 291 | 288 | 3 | 213 | 78 | 248 | 44 |
6 | Yangcun Mine (16) | 344 | 383 | 39 | 619 | 275 | 713 | 369 |
7 | Guqiao Mine (1414) | 423 | 348 | 75 | 1146 | 723 | 1566 | 1143 |
8 | Dingji Mine (1141) | 416 | 380 | 36 | 1321 | 905 | 1502 | 1086 |
9 | Pansidong Mine (1111) | 452 | 432 | 20 | 1193 | 741 | 1175 | 723 |
10 | Zhujidong Mine (1111) | 438 | 481 | 43 | 3067 | 2629 | 1760 | 1322 |
11 | Panji Mine (14,021) | 362 | 375 | 13 | 985 | 623 | 1020 | 658 |
12 | Panji Mine (1552) | 918 | 882 | 36 | 4749 | 3831 | 1441 | 523 |
13 | Yangquan Mine (8110) | 746 | 600 | 146 | 2906 | 2160 | 1385 | 639 |
14 | Wannian Mine (132,153) | 541 | 623 | 82 | 3234 | 2693 | 1274 | 733 |
15 | Yunjialing Mine (12,305) | 428 | 487 | 59 | 2280 | 1852 | 1347 | 919 |
Methods | Standard Deviation (d) | Relative Standard Deviation (%) |
---|---|---|
Method of this paper | 61 | 6.6 |
Empirical Formula (1) | 1767 | 192.5 |
Empirical Formula (2) | 798 | 87.0 |
Number | Name of Mining Area (Working Face Number) | Measured Value (mm·d−1) | Method of This Paper | Empirical Formula (1) | Empirical Formula (2) | |||
---|---|---|---|---|---|---|---|---|
Vmax (mm·d−1) | Differential Value (mm·d−1) | Vmax (mm·d−1) | Differential Value (mm·d−1) | Vmax (mm·d−1) | Differential Value (mm·d−1) | |||
1 | Mazhuang Mine (102) | 32.0 | 24.7 | 7.3 | 14.8 | 17.2 | 18.6 | 13.4 |
2 | Wuyang Mine (7305) | 61.0 | 51.5 | 9.5 | 27.7 | 33.3 | 38.5 | 22.5 |
3 | Erkuang Mine (1404) | 11.0 | 10.7 | 0.3 | 8.9 | 2.1 | 9.6 | 1.4 |
4 | Gengcun Mine (11,061) | 11.2 | 13.9 | 2.7 | 15.1 | 3.8 | 19.1 | 7.8 |
5 | Fengfeng Mine (0252) | 54.2 | 45.5 | 8.7 | 26.4 | 27.8 | 36.4 | 17.8 |
6 | Wangzhuang Mine (6206) | 144.3 | 127.1 | 17.2 | 51.1 | 93.2 | 74.2 | 70.1 |
7 | Sima Mine (1101) | 241.0 | 231.4 | 9.6 | 64.9 | 176.1 | 95.4 | 145.6 |
8 | Changcun Mine (S6-7) | 76.8 | 83.2 | 6.4 | 40.7 | 36.1 | 58.3 | 18.5 |
9 | Dongpo Mine (914) | 181.7 | 204.4 | 22.7 | 116.6 | 65.1 | 174.5 | 7.2 |
10 | Xiadian Mine (3111) | 74.0 | 74.0 | 0.0 | 49.8 | 24.2 | 72.2 | 1.8 |
11 | Xinyuan Mine (1101) | 205.0 | 200.8 | 4.2 | 63.4 | 141.6 | 93.1 | 111.9 |
12 | Tianzhu Mine (3229) | 21.5 | 18.9 | 2.6 | 14.7 | 6.8 | 18.6 | 2.9 |
13 | Xiaobaodang Mine (112,201) | 267.8 | 263.3 | 4.5 | 142.2 | 125.6 | 213.7 | 54.1 |
14 | Daliuta Mine (22,201) | 643.3 | 632.4 | 10.9 | 363.8 | 279.5 | 552.9 | 90.4 |
15 | Wuyang Mine (7806) | 64.3 | 56.1 | 8.2 | 38.2 | 26.1 | 54.5 | 9.8 |
Methods | Standard Deviation (mm·d−1) | Relative Standard Deviation (%) |
---|---|---|
Method of this paper | 10.0 | 1.6 |
Empirical Formula (1) | 107.8 | 16.8 |
Empirical Formula (2) | 60.5 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, F.; Yan, Y.; Zhu, Y.; Dai, L.; Kong, J. A Method for Predicting the Surface Subsidence Duration and the Maximum Subsidence Velocity. Land 2024, 13, 2016. https://doi.org/10.3390/land13122016
Zhang Y, Wang F, Yan Y, Zhu Y, Dai L, Kong J. A Method for Predicting the Surface Subsidence Duration and the Maximum Subsidence Velocity. Land. 2024; 13(12):2016. https://doi.org/10.3390/land13122016
Chicago/Turabian StyleZhang, Yanjun, Fei Wang, Yueguan Yan, Yuanhao Zhu, Linda Dai, and Jiayuan Kong. 2024. "A Method for Predicting the Surface Subsidence Duration and the Maximum Subsidence Velocity" Land 13, no. 12: 2016. https://doi.org/10.3390/land13122016
APA StyleZhang, Y., Wang, F., Yan, Y., Zhu, Y., Dai, L., & Kong, J. (2024). A Method for Predicting the Surface Subsidence Duration and the Maximum Subsidence Velocity. Land, 13(12), 2016. https://doi.org/10.3390/land13122016