Multicriteria Analysis in Apiculture: A Sustainable Tool for Rural Development in Communities and Conservation Areas of Northwest Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Methodology
2.2.1. Data Source
2.2.2. Reclassification of Variables and Suitability Thresholds
2.2.3. Analytic Hierarchy Process (AHP)
2.2.4. Generation of the Suitability Model for Apiculture
2.2.5. Validation of Results
3. Results
3.1. Criteria and Sub-Model Outputs
3.2. AHP Outcomes
3.3. Sub-Models and Final Suitability Model
3.4. Apiculture Suitability in Communal Areas and Conservation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novelli, S.; Vercelli, M.; Ferracini, C. An Easy {Mixed-Method} Analysis Tool to Support Rural Development Strategy {Decision-Making} for Beekeeping. Land 2021, 10, 675. [Google Scholar] [CrossRef]
- Sari, F.; Ceylan, D.A.; Özcan, M.M.; Özcan, M.M. A Comparison of Multicriteria Decision Analysis Techniques for Determining Beekeeping Suitability. Apidologie 2020, 51, 481–498. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Suitability Analysis for Beekeeping Sites Integrating {GIS}\& {MCE} Techniques. Spat. Anal. Model. Geogr. Transform. Process. Process 2011, 100, 255–274. [Google Scholar]
- Fedoriak, M.; Kulmanov, O.; Zhuk, A.; Shkrobanets, O.; Tymchuk, K.; Moskalyk, G.; Olendr, T.; Yamelynets, T.; Angelstam, P. Stakeholders’ Views on Sustaining Honey Bee Health and Beekeeping: The Roles of Ecological and Social System Drivers. Landsc. Ecol. 2021, 36, 763–783. [Google Scholar] [CrossRef]
- Phillips, C. Following Beekeeping: More-than-Human Practice in Agrifood. J. Rural Stud. 2014, 36, 149–159. [Google Scholar] [CrossRef]
- Potts, S.G.; Petanidou, T.; Roberts, S.; O’Toole, C.; Hulbert, A.; Willmer, P. Plant-Pollinator Biodiversity and Pollination Services in a Complex Mediterranean Landscape. Biol. Conserv. 2006, 129, 519–529. [Google Scholar] [CrossRef]
- Alton, K.; Ratnieks, F. Can Beekeeping Improve Mental Wellbeing during Times of Crisis? Bee World 2022, 99, 40–43. [Google Scholar] [CrossRef]
- MINAGRI. Plan Nacional de Desarrollo Apícola 2015–2025; MINAGRI: Kigali, Ruanda, 2015. [Google Scholar]
- MIDAGRI. En Perú Existen Más de 40 Mil Productores Apícolas Que Trabajan la Miel de Abeja en 300 Mil Colmenas a Nivel Nacional; Plataforma Digit. Única del Estado; MINAGRI: Kigali, Ruanda, 2021. [Google Scholar]
- UNALAM. Boletín Apícola del Perú; Universidad Agraria La Molina: Lima, Peru, 2016. [Google Scholar]
- Cotrina Sánchez, A.; Salazar, A.; Oviedo, C.; Bandopadhyay, S.; Mondaca, P.; Valentini, R.; Rojas Briceño, N.B.; Torres Guzmán, C.; Oliva, M.; Guzman, B.K.; et al. Integrated Cloud Computing and Cost Effective Modelling to Delineate the Ecological Corridors for Spectacled Bears (Tremarctos Ornatus) in the Rural Territories of the Peruvian Amazon. Glob. Ecol. Conserv. 2022, 36, e02126. [Google Scholar] [CrossRef]
- Freitas, B.M.; Imperatriz-Fonseca, V.L.; Medina, L.M.; Kleinert, A.D.M.P.; Galetto, L.; Nates-Parra, G.; Javier, J. Diversity, Threats and Conservation of Native Bees in the Neotropics. Apidologie 2009, 40, 332–346. [Google Scholar] [CrossRef]
- Al Naggar, Y.; Codling, G.; Giesy, J.P.; Safer, A. Beekeeping and the Need for Pollination from an Agricultural Perspective in Egypt. Bee World 2018, 95, 107–112. [Google Scholar] [CrossRef]
- MIDAGRI. Análisis de Mercado Pitahaya 2015–2020; Ministerio de Desarrollo Agrario y Riego: Kigali, Ruanda, 2021; pp. 1–50. [Google Scholar]
- Altunel, T.; Olmez, B. Beekeeping as a Rural Development Alternative in Turkish Northwest. Appl. Ecol. Environ. Res. 2019, 17, 6017–6029. [Google Scholar] [CrossRef]
- Bekić, B.; Jovanović, M. Beekeeping as a Factor of Danube Region Sustainable Development. In International Scientific Conference Sustainable Agriculture and Rural Development in Terms of the Republic of Serbia Strategic Goals Realization within the Danube Region: Regional Specificities; Institute of Agricultural Economics: Belgrade, Serbia, 2015; p. 655. [Google Scholar]
- Blanc, S.; Brun, F.; Di Vita, G.; Mosso, A. Traditional Beekeeping in Rural Areas: Profitability Analysis and Feasibility of Pollination Service. Calitatea 2018, 19, 72–79. [Google Scholar]
- Velardi, S.; Leahy, J.; Collum, K.; McGuire, J.; Ladenheim, M. “You Treat Them Right, They’ll Treat You Right”: Understanding Beekeepers’ Scale Management Decisions within the Context of Bee Values. J. Rural Stud. 2021, 81, 27–36. [Google Scholar] [CrossRef]
- Awad, A.M.; Owayss, A.A.; Iqbal, J.; Raweh, H.S.A.; Alqarni, A.S. {GIS} Approach for Determining the Optimum Spatiotemporal Plan for Beekeeping and Honey Production in {Hot-Arid} Subtropical Ecosystems. J. Econ. Entomol. 2019, 112, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Dossou, S.; Adanguidi, J.; Aoudji, A.K.N.; Gbedomon, R.C. Promotion of Beekeeping: Insights from an Empirical Analysis of Three Honey Value Chains in Benin; Blackwell Publishing Ltd: Oxford, UK, 2021. [Google Scholar]
- Abou-Shaara, H.F. Using Geographical Information System ({GIS}) and Satellite Remote Sensing for Understanding the Impacts of Land Cover on Apiculture over Time. Int. J. Remote Sens. Appl. 2013, 3, 171. [Google Scholar] [CrossRef]
- Campana, C.; Peralta, C.; Cecconello, J.C.; Pons, D.H.; Uranga, J.; Scavuzzo, M.C.; Ferral, A. Geospatial Tools Applied to the Generation of an Aptitude Map for the Development of Beekeeping Activity in San Javier, Córdoba, Argentina. In Proceedings of the 2019 {XVIII} Workshop on Information Processing and Control ({RPIC}), Salvador, Brazil, 18–20 September 2019; pp. 298–302. [Google Scholar]
- Noor Maris, N.M.; Mansor, S.; Shafri, H.Z. Apicultural Site Zonation Using {GIS} and {Multi-Criteria} Decision Analysis. Pertanika J. Trop. Agric. Sci. 2008, 31, 147–162. [Google Scholar]
- Sari, F.; Kandemir, I.; Ceylan, D.S.A. Integration of {NDVI} Imagery and Crop Coverage Registration System for Apiary Schedule. J. Apic. Sci. 2020, 64, 105–121. [Google Scholar] [CrossRef]
- Zoccali, P.; Malacrinò, A.; Campolo, O.; Laudani, F.; Algeri, G.M.; Giunti, G.; Strano, C.P.; Benelli, G.; Palmeri, V. A Novel {GIS-Based} Approach to Assess Beekeeping Suitability of Mediterranean Lands. Saudi J. Biol. Sci. 2017, 24, 1045–1050. [Google Scholar] [CrossRef]
- Gorgi, M.; Piri Sahragard, H.; Noori, S. Potential Analysis of Beekeeping Land Use Development Using Analytical Hierarchy Process (Case Study: Tamin Rangelands—Mirjaveh City). Geogr. Dev. 2019, 17, 237–256. [Google Scholar]
- Salatnaya, H.; Widiatmaka; Sumantri, C.; Kahoho, S.; Fuah, A.M. Potential Growth of Meliponiculture in West Halmahera, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 399, 12046. [Google Scholar] [CrossRef]
- Widiatmaka; Ambarwulan, W.; Sjamsudin, C.E.; Syaufina, L. Geographic Information System and Analytical Hierarchy Process for Land Use Planning of Beekeeping in Forest Margin of Bogor Regency, Indonesia. J. Trop. Silvic. 2016, 7, S50–S57. [Google Scholar]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 281, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Setting Priorities in Health Care, Symposium on Planning, Priority Setting, Resource Allocation, Statistical Bases for Public Health Decision Making; Estados Un: New York, NY, USA, 1980. [Google Scholar]
- Chen, Y.; Yu, J.; Khan, S. Spatial Sensitivity Analysis of Multi-Criteria Weights in {GIS-Based} Land Suitability Evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Hossain, M.S.; Das, N.G. {GIS-Based} Multi-Criteria Evaluation to Land Suitability Modelling for Giant Prawn (Macrobrachium Rosenbergii) Farming in Companigonj Upazila of Noakhali, Bangladesh. Comput. Electron. Agric. 2010, 70, 172–186. [Google Scholar] [CrossRef]
- Wagner, K.; Meilby, H.; Cross, P. Sticky Business—Why Do Beekeepers Keep Bees and What Makes Them Successful in Tanzania? J. Rural Stud. 2019, 66, 52–66. [Google Scholar] [CrossRef]
- León Mendoza, J.C. Capital Humano y Pobreza Regional En Perú. Reg. Soc. 2019, 31, e1058. [Google Scholar] [CrossRef]
- Elmasta, N.; Ölmez, I.; Vural, E. Suitability Analysis of Apiculture (Beekeeping) Activity Areas with {Multi-Criteria} Method: A Case Study of Adiyaman. Coğrafya Derg. 2022, 44, 19–30. [Google Scholar] [CrossRef]
- Williams, R.S. Satellite Image Atlas of Glaciers of the World; US Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Instituto Nacional de Estadística e Informática Perú. Indicadores de Empleo e Ingreso Por Departamento 2007–2017; Instituto Nacional de Estadística e Informática: Lima, Perú, 2018. [Google Scholar]
- MINAM. Perú Reino de Bosques; Editorial Etiqueta Negra/Pool Editores SAC, Ed.; Primera; Ministerio del Ambiente: Lima, Peru, 2014. [Google Scholar]
- Miura, T.; Tokumoto, Y.; Shin, N.; Shimizu, K.K.; Pungga, R.A.S.; Ichie, T. Utility of Commercial High-resolution Satellite Imagery for Monitoring General Flowering in Sarawak, Borneo. Ecol. Res. 2023, 38, 386–402. [Google Scholar] [CrossRef]
- Planet Team. Planet Explorer. Available online: https://www.planet.com/products/planet-imagery/ (accessed on 1 September 2023).
- Wang, J.; Song, G.; Liddell, M.; Morellato, P.; Lee, C.K.F.; Yang, D.; Alberton, B.; Detto, M.; Ma, X.; Zhao, Y.; et al. An Ecologically-Constrained Deep Learning Model for Tropical Leaf Phenology Monitoring Using {PlanetScope} Satellites. Remote Sens. Environ. 2023, 286, 113429. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Rollin, O.; Benelli, G.; Benvenuti, S.; Decourtye, A.; Wratten, S.D.; Canale, A.; Desneux, N. Weed-Insect Pollinator Networks as Bio-Indicators of Ecological Sustainability in Agriculture. A Review. Agron. Sustain. Dev. 2016, 36, 8. [Google Scholar] [CrossRef]
- Régnière, J.; Powell, J.; Bentz, B.; Nealis, V. Effects of Temperature on Development, Survival and Reproduction of Insects: Experimental Design, Data Analysis and Modeling. J. Insect Physiol. 2012, 58, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Villagomez, G.N.; Nürnberger, F.; Requier, F.; Schiele, S.; Steffan-Dewenter, I. Effects of Temperature and Photoperiod on the Seasonal Timing of Western Honey Bee Colonies and an Early Spring Flowering Plant. Ecol. Evol. 2021, 11, 7834–7849. [Google Scholar] [CrossRef] [PubMed]
- Sari, F.; Ceylan, D.A. Site Suitability Analysis for Beekeeping via Analythical Hyrearchy Process, Konya Example. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 345–350. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Eid, K.S.A. Increasing the Profitability of Propolis Production in Honey Bee Colonies by Utilizing Remote Sensing Techniques to Spot Locations of Trees as Potential Sources of Resin. Remote Sens. Lett. 2019, 10, 922–927. [Google Scholar] [CrossRef]
- Amiri, F.; Shariff, A.R.B.M.; Arekhi, S. An Approach for Rangeland Suitability Analysis to Apiculture Planning in Gharah Aghach Region, {Isfahan-Iran}. World Appl. Sci. J. 2011, 12, 962–972. [Google Scholar]
- Santos, A.R.; Louzada, F.; Eugenio, F.C. {ArcGIS} 9.3 Total: Aplicações Para Dados Espaciais; CAUFES: Alegre, Brazil, 2010. [Google Scholar]
- Ishizaka, A.; Labib, A. Review of the Main Developments in the Analytic Hierarchy Process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Understanding the Analytic Hierarchy Process. SpringerBr. Oper. Res. 2017, 110, 7–22. [Google Scholar]
- Malczewski, J. {GIS-Based} Land-Use Suitability Analysis: A Critical Overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- MINAM. GeoBosques Bosque y Pérdida de Bosque. In Programa Nacional de Conservación de Bosques para la Mitigación del Cambio Climático; Gobierno del Peru: Lima, Peru, 2023. [Google Scholar]
- Klein, A.-M.; Brittain, C.; Hendrix, S.D.; Thorp, R.; Williams, N.; Kremen, C. Wild Pollination Services to California Almond Rely on Semi-Natural Habitat. J. Appl. Ecol. 2012, 49, 723–732. [Google Scholar] [CrossRef]
- Rodriguez, M. Cómo Lograr El Equilibrio Entre Agricultura, Apicultura y Biodiversidad? CropLife Latin America: Bogota, Colombia, 2021. [Google Scholar]
- Saffianian, R. Multiple Use of Rangeland (Case Study: Taleghan Region); Tehran University: Tehran, Iran, 2005. [Google Scholar]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.J.J.; Xu, X.; Hu, Y.; Qiao, Z.; Wang, L.L.; Diao, C.; Xian, G.; et al. Examining Rice Distribution and Cropping Intensity in a Mixed Single- and Double-Cropping Region in South China Using All Available Sentinel 1/2 Images. Int. J. Appl. Earth Obs. Geoinf. 2020, 101, 102351. [Google Scholar] [CrossRef]
- García Huamán, F.T.; Angeles Trauco, M. Identificación de Flora Apícola En El Fundo Vitaliano, Amazonas, Perú. Rev. Científica UNTRM Cienc. Soc. Humanid. 2021, 2, 9. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Kuhn, A. Honeybee Foraging in Differentially Structured Landscapes. Proc. R. Soc. B Biol. Sci. 2003, 270, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Sande, S.O.; Crewe, R.M.; Raina, S.K.; Nicolson, S.W.; Gordon, I. Proximity to a Forest Leads to Higher Honey Yield: Another Reason to Conserve. Biol. Conserv. 2009, 142, 2703–2709. [Google Scholar] [CrossRef]
- BBKA. Bees, Neighbours and Siting an Apiary; British Beekeepers Association: Kenilworth, UK, 2012. [Google Scholar]
- Visscher, P.K.; Seeley, T.D. Foraging Strategy of Honeybee Colonies in a Temperate Deciduous Forest. Ecology 1982, 63, 1790–1801. [Google Scholar] [CrossRef]
- Arundel, J.; Winter, S.; Gui, G.; Keatley, M. A Web-Based Application for Beekeepers to Visualise Patterns of Growth in Floral Resources Using {MODIS} Data. Environ. Model. Softw. 2016, 83, 116–125. [Google Scholar] [CrossRef]
- Fundación Ayuda en Acción. Apicultura y Cadenas de Valor: Ùn Zumbido a La Sostenibilidad! Ayuda en Accion: Madrid, Spain, 2021. [Google Scholar]
- Llaxacondor, J. Panorama de La Apicultura en el Perú; Agencia Agraria de Noticias: Lima, Peru, 2020. [Google Scholar]
- Chacón, L. Cajamarca: Mujeres de San Ignacio Destacan en la Producción Sostenible de Miel de Abeja; SPDA Actualidad Ambiental: Lima, Peru, 2021. [Google Scholar]
Criteria/Variables | Description of Sub-Criteria | Source/URL |
---|---|---|
Biophysical | Land Use Land Cover (LULC) | https://dynamicworld.app/ (accessed on 15 March 2023). |
Digital Elevation Model (DEM) | [43] | |
Slope (derived from DEM) | ||
Temperature | [44] | |
Precipitation | [44] | |
Hydrography | https://snirh.ana.gob.pe/observatorioSNIRH/ (accessed on 10 March 2023). | |
Socioeconomic | Roads | https://portal.mtc.gob.pe/estadisticas/descarga.html (accessed on 10 March 2023). |
Urban areas | https://dynamicworld.app/ (accessed on 15 March 2023). |
Sub-Criteria/Variables | Highly Suitable (4) | Apt (3) | Marginally Adequate (2) | Not Suitable (1) | Adapted from the Studies: |
---|---|---|---|---|---|
Biophysical variables | |||||
Land cover/Land use | Forest | Pastures and crops | Shrub/herbaceous vegetation | Bodies of water | [21,25,48] |
Slope (%) | <5 | 5–20 | 20–45 | >45 | [35,49] |
Distance to hydrography (km) | 0–0.5 | 0.5–1.5 | 1.5–3.0 | >3.0 | [2,27,35] |
Elevation (m) | 200–1000 | 1000–1500 | 1500–2000 | 0–200/>2000 | [2,27,35] |
Temperature (°C) | 20–25 | 15–20/25–27 | 10–15 | <10 | [25,49,50] |
Precipitation (mm) | 1275–1800 | 1800–3000 | 3000–3500 | >3500 | [2,27,35] |
Socioeconomic variables | |||||
Distance to roads (km) | 0.5–1.5 | 1.5–2.0 | 2.0–3.0 | <0.5/>3.0 | [2,25,35,50] |
Distance to urban areas (km) | >2.0 | 1.0–2.0 | 0.5–1.0 | <0.5 | [2,21,25] |
To | Criteria 1 | Criteria 2 | Criteria 3 | ... | Criteria nn |
---|---|---|---|---|---|
Criteria 1 | 1 | to12 | to13 | ... | to1n |
Criteria 2 | to21 | 1 | to23 | ... | to2n |
Criteria 3 | to31 | to32 | 1 | ... | to3n |
... | ... | ... | ... | 1 | |
Criteria nn | ton1 | ton2 | ton3 | 1 |
Less important | Equally important | More important * | ||||||
Extreme | Strong | Moderate | Moderate | Strong | Extreme | |||
1/9 | 1/7 | 1/5 | 1/3 | 1 | 3 | 5 | 7 | 9 |
Criteria | Sub-Criteria | Highly Suitable (km2) | Suitable (km2) | Marginally Adequate (km2) | Not Suitable (km2) |
---|---|---|---|---|---|
Biophysical | Land cover/land use | 28,306.2 | 8844.9 | 4356.3 | 75.8 |
Slope (%) | 2422.1 | 11,834.9 | 11,563.2 | 15,763.0 | |
Distance to water systems (km) | 15,923.6 | 16,249.1 | 7045.4 | 2365.1 | |
Elevation (m) | 15,598.4 | 5394.4 | 7917.1 | 12,673.2 | |
Temperature (°C) | 16,041.4 | 19,769.6 | 5450.1 | 322.0 | |
Precipitation (mm) | 8938.5 | 15,987.3 | 2940.4 | 13,717.1 | |
Socioeconomic | Distance to roads (km) | 2278.64 | 1448.18 | 4146.82 | 34,291.50 |
Distance to urban areas (km) | 3521.85 | 1413.68 | 910.31 | 36,221.76 |
Objective | Criteria | Sub-Criteria (Figure) | Weight |
---|---|---|---|
Areas suitable for beekeeping | Biophysical | LULC (Figure 4a) | 0.37 |
Slope (Figure 4b) | 0.06 | ||
Distance to hydrography (Figure 4c) | 0.20 | ||
Elevation (Figure 4d) | 0.12 | ||
Temperature (Figure 4e) | 0.10 | ||
Precipitation (Figure 4f) | 0.15 | ||
Socioeconomic | Distance to roads (Figure 4h) | 0.44 | |
Distance to populated centers (Figure 4i) | 0.56 |
Proportion | Biophysical Sub-Criteria | Socioeconomic Sub-Criteria | Eligibility Criteria |
---|---|---|---|
N | 6 | 2 | 2 |
Λmax | 6.45 | - | - |
IC | 0.09 | - | - |
AI | 1.25 | 0.0 | 0.0 |
RC | 0.07 |
Provinces | Highly Suitable | Adequate | Marginally Adequate | Total |
---|---|---|---|---|
Bagua | 299.1 | 5367.0 | 126.0 | 5792.2 |
Bongará | 180.2 | 2726.1 | 112.9 | 3019.2 |
Chachapoyas | 116.3 | 3763.8 | 621.7 | 4501.8 |
Condorcanqui | 46.4 | 16,307.7 | 1463.2 | 17,817.3 |
Luya | 200.5 | 2661.9 | 236.9 | 3099.3 |
Rodriguez de Mendoza | 370.6 | 3255.1 | 86.6 | 3712.3 |
Utcubamba | 393.6 | 3442.0 | 136.4 | 3972.1 |
Overall total | 1606.8 | 37,523.6 | 2783.8 | 41,914.1 |
% of coverage of study area | 3.8 | 89.5 | 6.6 | 100.0 |
Communal Territory | ||||||||
---|---|---|---|---|---|---|---|---|
Rural Communities | Native Communities | |||||||
Suitability | High | Middle | Low | Total | High | Middle | Low | Total |
Total (km2) | 315.6 | 5737.4 | 729.2 | 6782.2 | 128.4 | 15,891.1 | 1193.6 | 17,213.9 |
% coverage of conserved area | 4.7 | 84.6 | 10.8 | 100.0 | 0.8 | 92.3 | 6.9 | 100.0 |
Conservation Categories | ||||||||
Private Conservation Area | 27.4 | 1362.7 | 176.9 | 1567.1 | ||||
Regional Conservation Area | 13.5 | 584.9 | 29.8 | 628.2 | ||||
Natural Protected Area | 0.4 | 3732.6 | 125.0 | 3858.0 | ||||
Overall total | 41.4 | 5680.2 | 331.8 | 6053.3 | ||||
% | 0.7 | 93.8 | 5.5 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotrina-Sanchez, A.; García, L.; Calle, C.; Sari, F.; Bandopadhyay, S.; Rojas-Briceño, N.B.; Meza-Mori, G.; Torres Guzmán, C.; Auquiñivín-Silva, E.; Arellanos, E.; et al. Multicriteria Analysis in Apiculture: A Sustainable Tool for Rural Development in Communities and Conservation Areas of Northwest Peru. Land 2023, 12, 1900. https://doi.org/10.3390/land12101900
Cotrina-Sanchez A, García L, Calle C, Sari F, Bandopadhyay S, Rojas-Briceño NB, Meza-Mori G, Torres Guzmán C, Auquiñivín-Silva E, Arellanos E, et al. Multicriteria Analysis in Apiculture: A Sustainable Tool for Rural Development in Communities and Conservation Areas of Northwest Peru. Land. 2023; 12(10):1900. https://doi.org/10.3390/land12101900
Chicago/Turabian StyleCotrina-Sanchez, Alexander, Ligia García, Christian Calle, Fatih Sari, Subhajit Bandopadhyay, Nilton B. Rojas-Briceño, Gerson Meza-Mori, Cristóbal Torres Guzmán, Erick Auquiñivín-Silva, Erick Arellanos, and et al. 2023. "Multicriteria Analysis in Apiculture: A Sustainable Tool for Rural Development in Communities and Conservation Areas of Northwest Peru" Land 12, no. 10: 1900. https://doi.org/10.3390/land12101900
APA StyleCotrina-Sanchez, A., García, L., Calle, C., Sari, F., Bandopadhyay, S., Rojas-Briceño, N. B., Meza-Mori, G., Torres Guzmán, C., Auquiñivín-Silva, E., Arellanos, E., & Oliva, M. (2023). Multicriteria Analysis in Apiculture: A Sustainable Tool for Rural Development in Communities and Conservation Areas of Northwest Peru. Land, 12(10), 1900. https://doi.org/10.3390/land12101900