Bibliometric Analysis of the Research (2000–2020) on Land-Use Carbon Emissions Based on CiteSpace
Abstract
:1. Introduction
2. Data Acquisition and Methods
2.1. Data Collection and Processing
2.2. Scientometric Method of Analysis
3. Results
3.1. Analysis of Research Trend
3.2. Analysis of Research Cooperation Network
3.2.1. Analysis of Research Countries
3.2.2. Analysis of Major Research Institutions
3.2.3. Analysis of Researchers
3.3. Research Hotspots and Frontiers
3.3.1. Co-Occurrence Analysis of Keywords
3.3.2. Cluster Analysis of Keywords
3.3.3. Frontiers and Prospects of Research
4. Discussion
4.1. The Practices of Land Use Carbon Emissions in Western Countries
4.2. The Practices of Land Use Carbon Emissions in China
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louis, W.B. Human activities, climate changes affect marine populations. Calif. Agric. 1997, 51, 36–40. [Google Scholar]
- Zhang, J.; Wang, Q.; Xia, Y.; Furuya, K. Knowledge map of spatial planning and sustainable development: A visual analysis using CiteSpace. Land 2022, 11, 331. [Google Scholar] [CrossRef]
- Hajjaj, S.S.H.; Aqeel, A.A.K.A.; Sultan, M.T.H.; Shahar, F.S.; Shah, A.U.M. Review of recent efforts in cooling Photovoltaic Panels (PVs) for enhanced performance and better impact on the Environment. Nanomaterials 2022, 12, 1664. [Google Scholar] [CrossRef] [PubMed]
- Patten, B.C. The cardinal hypotheses of holoecology. Ecol. Model. 2016, 319, 63–111. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Hang, Y.; Wang, Q.W. Joint or separate? An economic-environmental comparison of energy-consuming and carbon emissions permits trading in China. Energy Econ. 2022, 109, 105949. [Google Scholar] [CrossRef]
- Shao, H.; Kim, G.; Li, Q.; Newman, G. Web of Science-based green infrastructure: A bibliometric analysis in CiteSpace. Land 2021, 10, 711. [Google Scholar] [CrossRef]
- Bekun, F.V.; Alola, A.A.; Gyamfi, B.A.; Yaw, S.S. The relevance of EKC hypothesis in energy intensity real-output trade-off for sustainable environment in EU-27. Environ. Sci. Pollut. Res. Int. 2021, 28, 51137–51148. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Adam, M.; Hussein, H. Connecting urban green spaces with children: A scientometric analysis using CiteSpace. Land 2022, 11, 1259. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhou, L.H.; Wang, Y.B. Prediction of the spatial pattern of carbon emissions based on simulation of land use change under different scenarios. Land 2022, 11, 1788. [Google Scholar] [CrossRef]
- Xia, Q.; Li, L.; Dong, J.; Zhang, B. Reduction effect and mechanism analysis of carbon trading policy on carbon emissions from land use. Sustainability 2021, 13, 9558. [Google Scholar] [CrossRef]
- Jiang, M.; An, H.; Gao, X.; Jia, N.; Liu, S.; Zheng, H. Structural decomposition analysis of global carbon emissions: The contributions of domestic and international input changes. J. Environ. Manag. 2021, 294, 112942. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wen, Y.; Choi, Y.; Zhang, X. Global trends on food security research: A bibliometric analysis. Land 2021, 10, 119. [Google Scholar] [CrossRef]
- Zhang, M.; Lan, M.; Chen, Y.; Yuan, K. Knowledge map analysis of foreign land use and carbon emissions—Econometric analysis based on CiteSpace software. China Land Sci. 2017, 31, 51–60. [Google Scholar]
- Chen, J.T.; Ren, Y.Y. Research progress on carbon emissions from land use in the past ten years. In Proceedings of the 2020 Industrial Architecture Academic Exchange Conference, Beijing, China, 21 November 2020. [Google Scholar]
- Li, L.; Wu, D.F.; Liu, Y.Y. Research hotspots and trends of land use and ecosystem services at home and abroad—Based on CiteSpace econometric analysis. Res. Soil Water Conserv. 2020, 27, 396–404. [Google Scholar]
- Li, M.; Wang, X.; Wang, Z.; Maqbool, B.; Hussain, A.; Khan, W.A. Bibliometric analysis of the research on the impact of environmental regulation on green technology innovation based on CiteSpace. Environ. Res. Public Health 2022, 19, 13273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, J.; Dong, Z.; Li, X. Research hotspots and trend analysis in the field of regional economics and carbon emissions since the 21st century: A Bibliometric Analysis. Sustainability 2022, 14, 11210. [Google Scholar] [CrossRef]
- Zahedi, R.; Aslani, A.; Seraji, M.A.N.; Zolfaghari, Z. Advanced bibliometric analysis on the coupling of energetic dark greenhouse with natural gas combined cycle power plant for CO2 capture. Korean J. Chem. Eng. 2022, 39, 3021–3031. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Liu, Z.; Hu, Z.; Wang, X. The methodological function of CiteSpace knowledge graph. Stud. Sci. Sci. 2015, 33, 242–253. [Google Scholar]
- Li, H.Y.; Du, Z.B. Visual analysis of urban ecological restoration research based on CiteSpace V. J. Saf. Environ. 2018, 18, 1209–1214. [Google Scholar]
- Ciais, P.; Canadell, J.G.; Luyssaert, S.; Chevallier, F.; Shvidenko, A.; Poussi, Z.; Jonas, M.; Peylin, P.; Wayne King, A.; Schulze, E.D.; et al. Can we reconcile atmospheric estimates of the northern terrestrial carbon sink with land-based accounting? Curr. Opin. Environ. Sustain. 2010, 2, 225–230. [Google Scholar] [CrossRef]
- Brovkin, V.; Sitch, S.; Von Bloh, W.; Claussen, M.; Bauer, E.; Cramer, W. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Glob. Chang. Biol. 2004, 10, 1253–1266. [Google Scholar] [CrossRef] [Green Version]
- Moors, E.J.; Jacobs, C.; Jans, W.; Supit, I.; Kutsch, W.L.; Bernhofer, C.; Béziat, P.; Buchmann, N.; Carrara, A.; Ceschia, E.; et al. Variability in carbon exchange of European croplands. Agric. Ecosyst. Environ. 2010, 139, 325–335. [Google Scholar] [CrossRef]
- Yi, Y.H.; Kimball, J.S.; Watts, J.D.; Natali, S.M.; Zona, D.; Liu, J.; Ueyama, M.; Kobayashi, H.; Oechel, W.; Miller, C.E. Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model. Biogeosciences 2021, 17, 5861–5882. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Treu, H.; Nordborg, M.; Cederberg, C.; Heuer, T.; Claupein, E.; Hoffmann, H.; Berndes, G. Carbon footprints and land use of conventional and organic diets in Germany. J. Clean. Prod. 2017, 161, 127–142. [Google Scholar] [CrossRef]
- Brandão, M.; Canals, L.M.I.; Clift, R. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 2011, 35, 2323–2336. [Google Scholar] [CrossRef]
- Leemans, R.; Eickhout, B.; Strengers, B.; Bouwman, L.; Schaeffer, M. The Consequences of uncertainties in land use, climate and vegetation responses on the terrestrial carbon. Sci. China Ser. C-Life Sci. 2002, 45, 126. [Google Scholar]
- Lal, R. Soil carbon management and climate change. Carbon Manag. 2013, 4, 339–361. [Google Scholar] [CrossRef]
- Obermeier, W.A.; Nabel, J.E.; Loughran, T.; Hartung, K.; Bastos, A.; Havermann, F.; Anthoni, P.; Arneth, A.; Goll, D.S.; Lienert, S.; et al. Modelled land use and land cover change emissions—A spatio-temporal comparison of different approaches. Earth Syst. Dyn. 2021, 12, 635–670. [Google Scholar] [CrossRef]
- Silvestrini, R.A.; Soares-Filho, B.S.; Nepstad, D.; Coe, M.; Rodrigues, H.; Assunção, R. Simulating fire regimes in the amazon in response to climate change and deforestation. Ecol. Appl. 2021, 21, 1573–1590. [Google Scholar] [CrossRef]
- Li, X.; Fan, Y.L.; Wu, L. CO2 Emissions and expansion of railway, road, airline and in-land waterway networks over the 1985–2013 period in China: A time series analysis. Transp. Res. Part D-Transp. Environ. 2017, 57, 130–140. [Google Scholar] [CrossRef]
- Zenone, T.; Chen, J.; Deal, M.W.; Wilske, B.; Jasrotia, P.; Xu, J.; Bhardwaj, A.K.; Hamilton, S.K.; Robertson, G.P. CO2 fluxes of transitional bioenergy crops: Effect of land conversion during the first year of cultivation. Glob. Chang. Biol. Bioenergy 2011, 3, 401–412. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; Egmond, F.V.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Globa. Chang. Biology 2019, 26, 219–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, L.; Wang, Y.; Zhao, J.; Li, Z.; Wang, J.; Wang, Q.; Zhou, J. Research on carbon emissions effects in Northeast China based on land use change. Bull. Soil Water Conserv. 2017, 37, 107–114. [Google Scholar]
- Cui, W.; Zhu, Z.Y.; Miao, J.J. Estimation and influencing factors of ecological cost of urban non-agricultural land under the pressure of carbon emissions reduction. Econ. Probl. 2016, 08, 120–125. [Google Scholar]
- Yuan, K.; Zhang, M.; Gan, C.; Chen, Y.; Zhu, Q.; Yang, H. Research on provincial carbon ecological compensation based on carbon emissions reduction targets. Resour. Environ. Yangtze Basin 2019, 28, 21–29. [Google Scholar]
- Xu, J.; Pan, H.Y.; Huang, P. Research on carbon emissions and ecological compensation in the main functional areas of Sichuan Province based on LUCC. Chin. J. Eco-Agric. 2019, 27, 142–152. [Google Scholar]
- Huang, X.J. Review of “research on urban system carbon cycle and land regulation”. Acta Geogr. Sin. 2013, 68, 872. [Google Scholar]
- Zhao, R.; Huang, X.; Gao, S.; Zhao, Z. Carbon emissions inventory measurement and emission reduction potential analysis in Jiangsu Province. Area Res. Dev. 2013, 32, 142–152. [Google Scholar]
- Zhao, R.; Huang, X.; Zhong, T.; Chuai, X. Carbon effect assessment and low carbon optimization of regional land use structure. Trans. Chin. Soc. Agric. Eng. 2013, 29, 220–229. [Google Scholar]
- Huang, J.B.; Jin, X.B. On the construction of the regional carbon cycle pressure index model and its regulation mechanism. Ecol. Econ. 2009, 12, 43–45+49. [Google Scholar]
- Cai, M.M.; Wu, K.Y. Research on the relationship between construction land expansion and land use carbon emissions in Shanghai. Resour. Dev. Mark. 2018, 34, 499–505. [Google Scholar]
- Zhang, M.; Chen, Y.; Cheng, D.; Gan, C. Analysis of the impact of changes in land use structure and intensity on carbon emissions. Resour. Dev. Mark. 2018, 34, 624–628+675. [Google Scholar]
- Liu, B.; Zhang, L.; Lu, F.; Wang, X.; Liu, W.; Zheng, H.; Meng, L.; OuYang, Z. Greenhouse gas emissions and net carbon sequestration of China’s conversion of farmland to forests. Chin. J. Appl. Ecol. 2016, 27, 1693–1707. [Google Scholar]
- Li, P.Y.; Shi, T.M. Research on low-carbon layout optimization of sishui science and technology new city. Low Carbon World 2016, 33, 168–169. [Google Scholar]
- Ye, Y.; Zhang, H.; Xu, X.; Wu, Q. Urban spatial structure for low carbon transportation: Theory, model and case. Urban Plan. Forum 2012, 05, 37–43. [Google Scholar]
- Yang, W.Y.; Cao, X.S. The impact mechanism of Guangzhou travel carbon emissions from the perspective of residential self-selection. Acta Geogr. Sin. 2018, 73, 346–361. [Google Scholar]
- Bai, C.M.; Mei, Y.; Zhang, M. Analysis of carbon emissions and carbon footprint of land use change in Wuhan City. Hubei Agric. Sci. 2015, 54, 313–317. [Google Scholar]
- Feng, Y.; Zhu, J.; Liu, H.; Xiao, W. Prediction of the spatial pattern of county carbon budget based on land use change. Acta Agric. Univ. Jiangxiensis 2020, 42, 852–862. [Google Scholar]
Year | WoS (Piece) | CNKI (Piece) | Year | WoS (Piece) | CNKI (Piece) |
---|---|---|---|---|---|
2001 | 54 | 1 | 2011 | 393 | 77 |
2002 | 67 | 3 | 2012 | 377 | 111 |
2003 | 80 | 1 | 2013 | 469 | 130 |
2004 | 98 | 1 | 2014 | 480 | 125 |
2005 | 110 | 3 | 2015 | 563 | 138 |
2006 | 99 | 1 | 2016 | 640 | 139 |
2007 | 144 | 2 | 2017 | 638 | 120 |
2008 | 183 | 8 | 2018 | 771 | 102 |
2009 | 209 | 8 | 2019 | 787 | 129 |
2010 | 309 | 52 | 2020 | 938 | 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Hu, S.; Jiang, L.; Han, B.; Li, J.; Wei, X. Bibliometric Analysis of the Research (2000–2020) on Land-Use Carbon Emissions Based on CiteSpace. Land 2023, 12, 165. https://doi.org/10.3390/land12010165
Li X, Hu S, Jiang L, Han B, Li J, Wei X. Bibliometric Analysis of the Research (2000–2020) on Land-Use Carbon Emissions Based on CiteSpace. Land. 2023; 12(1):165. https://doi.org/10.3390/land12010165
Chicago/Turabian StyleLi, Xiaoping, Sai Hu, Lifu Jiang, Bing Han, Jie Li, and Xuan Wei. 2023. "Bibliometric Analysis of the Research (2000–2020) on Land-Use Carbon Emissions Based on CiteSpace" Land 12, no. 1: 165. https://doi.org/10.3390/land12010165
APA StyleLi, X., Hu, S., Jiang, L., Han, B., Li, J., & Wei, X. (2023). Bibliometric Analysis of the Research (2000–2020) on Land-Use Carbon Emissions Based on CiteSpace. Land, 12(1), 165. https://doi.org/10.3390/land12010165