Changes in Vegetation Coverage and Migration Characteristics of Center of Gravity in the Arid Desert Region of Northwest China in 30 Recent Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Data Analysis
- Vegetation coverage calculation and classification
- Analysis of dynamic change of vegetation coverage
- Vegetation center of gravity migration model
3. Results
3.1. Analysis of Vegetation Coverage Changes
3.2. Shifting Law of Vegetation Coverage Gravity Center
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Vegetation Coverage Classification | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Longitude (°) | Latitude (°) | Longitude (°) | Latitude (°) | Longitude (°) | Latitude (°) | Longitude (°) | Latitude (°) | Longitude (°) | Latitude (°) | Longitude (°) | Latitude (°) | Longitude (°) | Latitude (°) | |
I | 87.89 | 39.73 | 88.70 | 39.71 | 89.23 | 39.79 | 89.90 | 39.76 | 89.97 | 39.92 | 89.18 | 39.77 | 89.27 | 39.81 |
II | 91.51 | 40.05 | 92.79 | 40.85 | 92.34 | 40.81 | 92.45 | 40.73 | 91.55 | 40.79 | 92.68 | 40.73 | 92.53 | 40.53 |
III | 92.67 | 41.28 | 90.92 | 41.44 | 89.79 | 41.35 | 87.97 | 42.38 | 89.09 | 41.13 | 89.82 | 41.35 | 89.61 | 41.30 |
IV | 89.34 | 42.47 | 87.89 | 42.67 | 87.73 | 42.73 | 87.35 | 42.88 | 87.60 | 42.50 | 87.51 | 42.72 | 87.36 | 42.40 |
Classification | 1990–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Distance (km) | Direction | Distance (km) | Direction | Distance (km) | Direction | Distance (km) | Direction | Distance (km) | Direction | Distance (km) | Direction | |
I | 70.05 | SE | 45.84 | NE | 58.15 | SE | 18.21 | NE | 69.48 | SW | 9.38 | NE |
II | 140.68 | NE | 37.8 | SW | 12.81 | SE | 76.22 | NW | 96.03 | SE | 25.82 | SW |
III | 148.18 | NW | 94.8 | SW | 188.98 | NW | 166.65 | SE | 65.92 | NE | 17.92 | SW |
IV | 121.15 | NW | 14.72 | NW | 35.16 | NW | 46.83 | SE | 25.67 | NW | 37.98 | SW |
References
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yu, J.; Zhao, X.; Wang, J. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: Quantification and mechanisms. Ecol. Indic. 2021, 131, 108191. [Google Scholar] [CrossRef]
- Richards, D.R.; Belcher, R.N. Global changes in urban vegetation cover. Remote Sens. 2019, 12, 23. [Google Scholar] [CrossRef]
- Jiang, M.; Tian, S.; Zheng, Z.; Zhan, Q.; He, Y. Human activity influences on vegetation cover changes in Beijing, China, from 2000 to 2015. Remote Sens. 2017, 9, 271. [Google Scholar] [CrossRef]
- Cotton, J.A.; Wharton, G.; Bass, J.A.B.; Heppell, C.M.; Wotton, R.S. The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology 2006, 77, 320–334. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. 2020, 159, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Shoshany, M.; Lavee, H.; Kutiel, P. Seasonal vegetation cover changes as indicators of soil types along a climatological gradient: A mutual study of environmental patterns and controls using remote sensing. Int. J. Remote Sens. 1995, 16, 2137–2151. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Pan, Y.Z.; Li, X.B.; He, C.Y. Research on comprehensive land cover classification in China: Based on NOAA/AVHRR and Holdridge PE index. Quaterary Sci. 2000, 20, 270–281. [Google Scholar]
- Gulzat, H.; Zhao, J.B. Changes of extreme temperature and precipitation in Altay region, Xinjiang in recent 50 years. J. Arid Land Resour. Environ. 2011, 25, 112–116. [Google Scholar]
- Chen, Y.N.; Chen, Y.P.; Zhu, C.G.; Li, W.H. The concept and mode of ecosystem sustainable management in arid desert areas in northwest China. Acta Ecol. Sin. 2019, 39, 7410–7417. [Google Scholar]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jędrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Zhou, S.; Duan, Y.; Zhang, Y.; Guo, J. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019. J. Arid Land 2021, 13, 534–547. [Google Scholar] [CrossRef]
- Wang, Y.J.; Qin, D.H. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Change Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Ding, H.; Xing, H. Spatiotemporal change and drivers analysis of desertification in the arid region of northwest China based on geographic detector. Environ. Chall. 2021, 4, 100082. [Google Scholar] [CrossRef]
- Amuti, T.; Luo, G. Analysis of land cover change and its driving forces in a desert oasis landscape of Xinjiang, northwest China. Solid Earth 2014, 5, 1071–1085. [Google Scholar] [CrossRef]
- Meng, H.H.; Gao, X.Y.; Huang, J.F.; Zhang, M.L. Plant phylogeography in arid Northwest China: Retrospectives and perspectives. J. Syst. Evol. 2015, 53, 33–46. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Li, Z.; Wang, P.; Wang, Z. Comparative assessment of vegetation dynamics under the influence of climate change and human activities in five ecologically vulnerable regions of China from 2000 to 2015. Forests 2019, 10, 317. [Google Scholar] [CrossRef]
- Xiao, J.; Eziz, A.; Zhang, H.; Wang, Z.; Tang, Z.; Fang, J. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecol. Evol. 2019, 9, 13596–13607. [Google Scholar] [CrossRef]
- Zulkar, H.; Zhao, T.N.; Jiang, Q.O. Boundary scope and change of arid desert area in northwest China. Arid Land Geogr. 2021, 44, 1635–1643. [Google Scholar]
- Wang, W.; Feng, Q.S.; Guo, N.; Sha, S.; Hu, D.; Wang, L.J. Dynamic monitoring of vegetation coverage based on long time-series NDVI data sets in northwest arid region of China. Pratacult. Sci. 2015, 32, 1969–1979. [Google Scholar]
- Zhou, A.Y.; Chu, S.L.; Wang, Z.W.; Chen, Q. Analysis of vegetation coverage change based on NDVI—A case study in Ganzhou area, Zhangye city, Gansu. Pratacult. Sci. 2008, 25, 23–29. [Google Scholar]
- Wan, H.M.; Li, X.; Dong, D.R. Estimation of desert vegetation coverage based on multisource remote sensing data. Chin. J. Appl. Ecol. 2012, 23, 3331–3337. [Google Scholar]
- Gu, Z.J.; Zeng, Z.Y.; Shi, X.Z.; Zheng, W.; Zhang, Z.L.; Hu, Z.F. A model calculating vegetation fractional coverage from ETM+ imagery. Ecol. Environ. 2008, 17, 771–776. [Google Scholar]
- Yang, Y.J.; Li, X.G.; Yan, K.; Liu, B. Temporal and Spatial Variation Characteristics of Grassland Vegetation Coverage in Hejing of Xinjiang Based on Remote Sensing and Dimidiate Pixel Model. J. Northwest For. Univ. 2017, 32, 210–217. [Google Scholar]
- Long, H.Y.; Weng, B.S.; Huang, B.B.; Meng, L. Response of vegetation covarage to varying gydrological conditions in Honggze lake wetland, 1984–2017. J. Hydrogeol. 2020, 41, 98–106. [Google Scholar]
- Xie, Z.; Ping, J.; Sun, L.; Dai, Y. Research on the change of vegetation loss and gain in Shenyang based on NDVI index. J. Phys. Conf. Ser. 2020, 1629, 012054. [Google Scholar] [CrossRef]
- He, L.; Dong, G.; Chen, J.L.; Cheng, W.X. Study on the cover and the change of vegetation in Ruoergai Plateau. Bull. Sci. Technol. 2021, 37, 1–8. [Google Scholar]
- Wang, J.G.; Zhang, F. Spatial-temporal pattern and gravity center change of fractional vegetation cover in Xinjiang, China from 2000 to 2019. Trans. Chin. Soc. Agric. Eng. 2020, 36, 188–194. [Google Scholar]
- Zhao, G.J.; Mu, X.M.; Tian, P.; Gao, P.; Sun, W.; Xu, W. Prediction of vegetation variation and vegetation restoration patential in the Loess Plateau. J. Soil Water Conserv. 2021, 35, 205–212. [Google Scholar]
- Wu, Z.; Zhang, H.; Krause, C.M.; Cobb, N.S. Climate change and human activities: A case study in Xinjiang, China. Clim. Change 2010, 99, 457–472. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Shi, X.; Chen, Z.; Li, W. Temperature and precipitation changes in different environments in the arid region of northwest China. Theor. Appl. Climatol. 2013, 112, 589–596. [Google Scholar] [CrossRef]
- Zeppel, M.J.B.; Wilks, J.V.; Lewis, J.D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 2014, 11, 3083–3093. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Shi, X. Why does the temperature rise faster in the arid region of northwest China? J. Geophys. Res. Atmos. 2012, 117, D16115. [Google Scholar] [CrossRef]
- Shao, G.; Wu, J. On the accuracy of landscape pattern analysis using remote sensing data. Landsc. Ecol. 2008, 23, 505–511. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- O’neill, R.V.; Riitters, K.H.; Wickham, J.D.; Jones, K.B. Landscape pattern metrics and regional assessment. Ecosyst. Health 1999, 5, 225–233. [Google Scholar] [CrossRef]
- Qian, J.Y.; Qin, F.C.; Wang, D.H.; Li, L.; Zhang, Y. Changes and driving force of landscape pattern in Yongshou County during 1998–2018. J. Northwest For. Univ. 2020, 35, 279–286. [Google Scholar]
- Wang, F.; Xie, X.P.; Chen, Z.C. Dynamic evolution of landscape spatial pattern in Taihu Lake basin, China. Chin. J. Appl. Ecol. 2017, 28, 3720–3730. [Google Scholar]
- Ramachandra, T.V.; Aithal, B.H.; Sanna, D.D. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth Obs. 2012, 18, 329–343. [Google Scholar]
- Trac, C.J.; Schmidt, A.H.; Harrell, S.; Hinckley, T.M. Environmental reviews and case studies: Is the returning farmland to forest program a success? Three case studies from Sichuan. Environ. Pract. 2013, 15, 350–366. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, Z.; Li, R.; Shi, Z. Long-term impact of China’s returning farmland to forest program on rural economic development. Sustainability 2020, 12, 1492. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Change 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Aït-Mesbah, S.; Dufresne, J.; Cheruy, F.; Hourdin, F. The role of thermal inertia in the representation of mean and diurnal range of surface temperature in semiarid and arid regions. Geophys. Res. Lett. 2015, 42, 7572–7580. [Google Scholar] [CrossRef]
- Lamchin, M.; Wang, S.W.; Lim, C.H.; Ochir, A.; Pavel, U.; Gebru, B.M.; Choi, Y.; Jeon, S.W.; Lee, W.-K. Understanding global spatio-temporal trends and the relationship between vegetation greenness and climate factors by land cover during 1982–2014. Glob. Ecol. Conserv. 2020, 24, e01299. [Google Scholar] [CrossRef]
- Mu, S.; Yang, H.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. J. Geogr. Sci. 2013, 23, 231–246. [Google Scholar] [CrossRef]
- Nie, T.; Dong, G.; Jiang, X.; Lei, Y. Spatio-temporal changes and driving forces of vegetation coverage on the loess plateau of Northern Shaanxi. Remote Sens. 2021, 13, 613. [Google Scholar] [CrossRef]
Classification | ID | Contribution of Vegetation Coverage | Description of Vegetation Cover |
---|---|---|---|
Slight | I | 0–10% | Sparse vegetation coverage, sporadic distribution, land desertification |
Moderate | II | 10–25% | The vegetation coverage is poor, the vegetation species is single, and the land is desertified |
High | III | 25–40% | The vegetation coverage is average, mainly xerophytes, the surface soil is shallow, and part of the soil is desertified |
Severe | IV | 40–100% | The vegetation coverage is good, mainly herbs and shrubs, and bare soil can be seen |
Year | Index | Vegetation Coverage Grade | |||
---|---|---|---|---|---|
I | II | III | IV | ||
1990 | Area (km2) | 944,630 | 1,122,758 | 407,997 | 481,606 |
Proportion (%) | 31.95 | 37.97 | 13.80 | 16.29 | |
1995 | Area (km2) | 1,497,716 | 875,601 | 235,488 | 455,513 |
Proportion (%) | 48.88 | 28.57 | 7.68 | 14.87 | |
2000 | Area (km2) | 1,589,151 | 824,876 | 197,966 | 452,518 |
Proportion (%) | 51.86 | 26.92 | 6.46 | 14.77 | |
2005 | Area (km2) | 1,646,998 | 711,733 | 208,410 | 457,498 |
Proportion (%) | 54.45 | 23.53 | 6.89 | 15.13 | |
2010 | Area (km2) | 1,645,373 | 716,874 | 208,115 | 493,730 |
Proportion (%) | 53.70 | 23.40 | 6.79 | 16.11 | |
2015 | Area (km2) | 1,494,380 | 834,829 | 214,655 | 498,919 |
Proportion (%) | 49.11 | 27.44 | 7.05 | 16.40 | |
2020 | Area (km2) | 1,449,421 | 835,167 | 252,753 | 525,175 |
Proportion (%) | 47.33 | 27.27 | 8.25 | 17.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zulkar, H.; Wang, D.; Zhao, T.; Xu, W. Changes in Vegetation Coverage and Migration Characteristics of Center of Gravity in the Arid Desert Region of Northwest China in 30 Recent Years. Land 2022, 11, 1688. https://doi.org/10.3390/land11101688
Li X, Zulkar H, Wang D, Zhao T, Xu W. Changes in Vegetation Coverage and Migration Characteristics of Center of Gravity in the Arid Desert Region of Northwest China in 30 Recent Years. Land. 2022; 11(10):1688. https://doi.org/10.3390/land11101688
Chicago/Turabian StyleLi, Xuewu, Hailili Zulkar, Daoyang Wang, Tingning Zhao, and Wentong Xu. 2022. "Changes in Vegetation Coverage and Migration Characteristics of Center of Gravity in the Arid Desert Region of Northwest China in 30 Recent Years" Land 11, no. 10: 1688. https://doi.org/10.3390/land11101688
APA StyleLi, X., Zulkar, H., Wang, D., Zhao, T., & Xu, W. (2022). Changes in Vegetation Coverage and Migration Characteristics of Center of Gravity in the Arid Desert Region of Northwest China in 30 Recent Years. Land, 11(10), 1688. https://doi.org/10.3390/land11101688