Topsoil Seed Bank as Feeding Ground for Farmland Birds: A Comparative Assessment in Agricultural Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Design
2.3. Topsoil Seed Bank Sampling, Seed Extraction and Identification
2.4. Data Analysis
3. Results
3.1. Composition of the Topsoil Seed Bank as Food Source to Farmland Birds
3.2. Shannon Entropy and Seed Abundance of the Topsoil Seed Bank
3.2.1. Model Selection
3.2.2. Shannon Entropy of the Topsoil Seed Bank
3.2.3. Seed Abundance of the Topsoil Seed Bank
4. Discussion
4.1. Effect of Habitat (Crop) Type on the Topsoil Seed Bank
4.2. Agricultural Habitats with a Topsoil Seed Bank Serving as Food Source to Farmland Birds
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Family | Plant Species | Phenology * | Habitat | ||||
---|---|---|---|---|---|---|---|
Life-Cycle | BG (Life-Form) | Cereals | Maize | Tillage | Clover | ||
Poaceae | Alopecurus myosuroides | A | G (The) | + | |||
Avena spp. | A | G (The) | + | ||||
Bromus tectorum | A | G (The) | + | ||||
Bromus spp. | A | G (The) | + | ||||
Cynodon dactylon | P | G (The/Geo/Hem) | + | + | + | ||
Hordeum murinum | A | G | + | + | |||
Lolium multiflorum | A | G (The) | + | ||||
Lolium rigidum | A | G | + | + | + | ||
Phalaris brachystachys | A | G | + | ||||
Sorghum halepense | A | G (Cha/Geo/The) | + | ||||
Cyperaceae | Cyperus glomeratus | A or P | G (The) | + | |||
Amaranthaceae | Amaranthus blitoides | A | F (The) | + | + | ||
Amaranthus retroflexus | A | F (The) | + | + | |||
Asteraceae | Anthemis altissima | A | F (Pha) | + | |||
Anthemis arvensis | A | F (Pha) | + | + | |||
Sonchus arvensis | P | F (Geo) | + | + | + | + | |
Sonchus asper | A or B | F (Hem/The) | + | + | |||
Sonchus oleraceus | WA | F (The) | + | + | + | + | |
Taraxacum officinale | WA | F (Cha/Hem) | + | + | |||
Tragopogon longifolius | P | F | + | ||||
Tragopogon pratensis | B | F | + | ||||
Xanthium spinosum | A | F (The) | + | ||||
Apiaceae | Bifora radians | A | F | + | + | ||
Caucalis platycarpos | A | F (The) | + | ||||
Scandix pecten-veneris | A | F (The) | + | ||||
Boraginaceae | Echium italicum | B | F | + | |||
Lithospermum arvense | A | F (The) | + | ||||
Brassicaceae | Capsella bursa-pastoris | A | F (Hem/The) | + | |||
Cardaria draba | A | F (The) | + | ||||
Neslia paniculata | A | F (Hem) | + | ||||
Sisymbrium altissimum | A or B | F (The) | + | ||||
Sisymbrium irio | A | F (The) | + | ||||
Campanulaceae | Legusia spegulum veneris | A | F | + | |||
Caryophyllaceae | Agrostemma githago | A | F | + | |||
Dianthus armeria var. uniflorus | A or B | F | + | ||||
Silene inflate | A | F (Cry/Hem) | + | ||||
Chenopodiaceae | Chenopodium album var. viride | A | F (The) | + | + | ||
Convolvulaceae | Convolvulus arvensis | P | F (The/Geo/Cli) | + | + | ||
Euphorbiaceae | Chrozophora tinctonia | A | F (The) | + | |||
Fabaceae | Lathyrus aphaca | A | L (The/ Cli) | + | |||
Trifolium striatum | A | L (Cha) | + | ||||
Medicago spp. | A | L (Hem/The) | + | ||||
Vicia spp. | A or P | L (The/Cli) | + | + | |||
Fumariaceae | Fumaria capreolata | A | F (Cli) | + | |||
Fumaria officinalis | A | F | + | + | |||
Geraniaceae | Geranium purpureum | A | F (The) | ||||
Zygophyllaceae | Tribulus terrestris | A | F (The) | + | |||
Lamiaceae | Lamium amplexicaule | A | F (The) | + | + | ||
Malvaceae | Malva sylvestris | B | F (Hem) | + | |||
Papaveraceae | Papaver hybridum | A | F (The) | ||||
Papaver rhoeas | A | F (The) | + | + | |||
Polygonaceae | Bilderdykia convolvulus | A | F (The) | + | + | ||
Polygonum aviculare | A | F (Cry/The) | + | + | + | ||
Portulacaceae | Portulaca oleracea | A | F (The) | + | |||
Ranunculaceae | Adonis aestivalis | A | F | + | + | ||
Consolida regalis | A | F | + | ||||
Delphinium orientale | A | F | + | ||||
Ranunculus spp. | A | F (The/Hem) | + | ||||
Rubiaceae | Galium spp. | A | F (The) | + | + | ||
Scrophulariaceae | Veronica persica | A | F (The) | + | |||
Solanaceae | Solanum nigrum | P | F (Hem/The) | + | |||
Total number (species richness) of the overall 61 species per habitat: | 19 | 23 | 8 | 19 |
Variable 1 | Habitat | |||
---|---|---|---|---|
Cereals | Maize | Tillage | Clover | |
Field surface area (in habitat) | 19.75 ± 3.46 | 27.45 ± 5.78 | 20.32 ± 3.95 | 28.58 ± 14.16 |
Field Physiognomy Index | 0.42 ± 0.22 | 0.22 ± 0.11 | 0.04 ± 0.02 | 0.59 ± 0.41 |
% bare soil | 56.8 ± 1.96 | 94.3 ± 0.76 | 98 ± 0.41 | 76.3 ± 2.04 |
Number of non-cultivated species | 46.1 ± 1.99 | 5.61 ± 1.07 | 17.2 ± 3.5 | 12.6 ± 1.73 |
% plant cover of non-cultivated species | 33.8 ± 1.84 | 2.38 ± 0.55 | 1.82 ± 0.4 | 1.74 ± 0.47 |
Number of species serving as food items to birds | 21 ± 1.26 | 0.22 ± 0.07 | 0.95 ± 0.15 | 0.58 ± 0.35 |
% plant cover of species serving as food items to birds | 25.9 ± 1.76 | 0.19 ± 0.11 | 1.01 ± 0.31 | 0.01 ± 0 |
% plant cover of cultivated species | 9.22 ± 0.88 | 3.32 ± 0.33 | 0.21 ± 0.1 | 22 ± 1.97 |
Bird Species | Habitat | Bern Convention | 79/409 EC Directive | SPEC | Bonn Convention |
---|---|---|---|---|---|
Accipiter nisus | II | ||||
Alauda arvensis * | F | III | II/2 | 3 | |
Anthus pratensis | II | ||||
Athene noctua | II | 3 | |||
Buteo buteo | II | ||||
Carduelis cannabina * | F | II | 4 | ||
Carduelis carduelis * | F | II | |||
Carduelis chloris | F | II | 4 | ||
Circus cyaneus | II | I | II | ||
Coccothraustes coccothraustes | II | ||||
Corvus corone | |||||
Corvus monedula | F | 4 | |||
Dendrocopos syriacus | II | I | 4 | ||
Emberiza cirlus | II | ||||
Erithacus rubecula | W | II | 4 | II | |
Falco columbarius | II | I | |||
Falco tinnunculus * | F | II | 3 | II | |
Fringilla coelebs | W | III | 4 | ||
Galerida cristata | III | 3 | |||
Garrulus glandarius | |||||
Melanocorypha calandra | II | I | 3 | ||
Miliaria calandra * | F | III | 4 | ||
Parus major | W | II | |||
Passer domesticus * | |||||
Passer montanus * | F | III | |||
Phoenicurus ochruros | II | ||||
Pica pica | |||||
Pluvialis apricaria | III | I-II/2 | II | ||
Prunella modularis * | II | 4 | |||
Streptopelia decaocto | III | II/2 | |||
Sturnus vulgaris * | F | ||||
Turdus merula * | W | III | II/2 | 4 | II |
Turdus philomelos * | W | III | II/2 | 4 | II |
Season | Sampling/Parameter | Habitat (i.e., Crop) | Number of Fields | Area (Hectares) | Replicates (R) | Materials | Methods |
---|---|---|---|---|---|---|---|
fall/winter 2006 | (a)
| cereals | 10 | 19.75 | 20 | Quadrat 1 × 1 m2 | |
clover | 6 | 17.15 | 20 | ||||
tillage | 10 | 20.31 | 20 | ||||
maize | 10 | 27.45 | 20 | ||||
(b) soil cores sampling/soil seed bank abundance & diversity | cereals | 6 | 19.75 | 10 |
| [64] | |
clover | 3 | 17.15 | 10 | ||||
tillage | 6 | 20.31 | 10 | ||||
maize | 6 | 27.45 | 10 | ||||
spring 2007 | cereals | 4 | - | 10 | |||
clover | 3 | - | 10 | ||||
tillage | 3 | - | 10 | ||||
maize | 2 | - | 10 |
Family | Plant Species | Habitat | |||||||
---|---|---|---|---|---|---|---|---|---|
Cereals | Maize | Tillage | Clover | ||||||
Winter | Spring | Winter | Spring | Winter | Spring | Winter | Spring | ||
Amaranthaceae | Amaranthus albus * | - | 112.99 | 112.36 | 10,112.99 | 56.18 | 112.99 | - | 1977.40 |
Amaranthaceae | Amaranthus blitoides * | 56.18 | - | - | - | 0.00 | 112.99 | 1629.21 | - |
Amaranthaceae | Amaranthus retroflexus *,‡ | 10,224.72 | 6271.19 | 28,146.07 | 10,000.00 | 3539.33 | 4124.29 | 12,078.65 | 21,807.91 |
Asteraceae | Lactuca serriola | - | - | - | - | - | - | 56.18 | - |
Asteraceae | Sonchus asper | - | - | 11123.60 | - | - | - | - | - |
Apiaceae | Aethusa cynapium * | 112.36 | 2316.38 | - | - | - | - | 0.00 | 4802.26 |
Apiaceae | Bifora radians * | 1460.67 | 112.99 | - | - | - | - | - | - |
Apiaceae | Torilis nodosa | - | - | 56.18 | - | - | - | - | - |
Boraginaceae | Lithospermum arvense * | 2415.73 | 8644.07 | 112.36 | 56.50 | 112.36 | - | 1910.11 | 338.98 |
Brassicaceae | Brassica juncea *,‡ | 786.52 | 1186.44 | 1460.67 | 56.50 | 1235.96 | 169.49 | 449.44 | 1581.92 |
Brassicaceae | Brassica nigra | - | - | - | - | - | - | - | 1016.95 |
Brassicaceae | Brassica rapa | - | - | 617.98 | - | - | - | 280.90 | - |
Brassicaceae | Brassica sp. | - | - | - | - | 56.18 | - | - | - |
Brassicaceae | Camelina microcarpa * | - | 169.49 | 112.36 | - | - | - | - | 56.50 |
Brassicaceae | Capsella bursa-pastoris * | 112.36 | - | 56.18 | - | - | - | 280.90 | 56.50 |
Brassicaceae | Sinapis arvensis *,‡ | 3483.15 | 790.96 | 2191.01 | 1468.93 | 3370.79 | 508.47 | 617.98 | 1186.44 |
Caryophyllaceae | Silene dioica *,‡ | 1348.31 | 2881.36 | 4438.20 | 903.95 | 1179.78 | 225.99 | 4438.20 | 1920.90 |
Caryophyllaceae | Stellaria media | - | - | - | - | - | 1468.93 | - | - |
Chenopodiaceae | Chenopodium album *,‡ | 23,651.69 | 8135.59 | 24,887.64 | 14,689.27 | 19,157.30 | 3276.84 | 22,134.83 | 6610.17 |
Chenopodiaceae | Chenopodium vulvaria * | 2134.83 | - | 393.26 | 2259.89 | 2303.37 | 1977.40 | 4213.48 | - |
Convolvulaceae | Ipomoea hederacea | - | - | - | - | - | - | 56.18 | - |
Euphorbiaceae | Chrozophora tinctoria | 168.54 | - | - | - | 56.18 | - | - | - |
Euphorbiaceae | Euphorbia spp. * | 1741.57 | 790.96 | 337.08 | - | 561.80 | - | 1460.67 | - |
Fabaceae | Juncus sp. * | 3707.87 | 1751.41 | - | - | 561.80 | - | - | - |
Fabaceae | Medicago mimina | 56.18 | - | - | - | - | - | - | - |
Fabaceae | Medicago sativa | - | - | - | - | - | - | 168.54 | - |
Fabaceae | Medicago polymorpha | 168.54 | - | - | - | 112.36 | - | - | - |
Geraniaceae | Geranium lucidum | 674.16 | - | 56.18 | - | - | - | 224.72 | - |
Geraniaceae | Geranium pusillum | 56.18 | - | - | - | - | - | - | - |
Lamiaceae | Lamium amplexicaule * | 112.36 | 1129.94 | 224.72 | - | 112.36 | - | 617.98 | 960.45 |
Malvaceae | Abutilon theophrasti * | - | 169.49 | 56.18 | 395.48 | - | 56.50 | - | - |
Malvaceae | Malva sylvestris | - | - | - | - | - | - | 112.36 | - |
Papaveraceae | Papaver rhoeas * | 3876.40 | 4124.29 | 2640.45 | - | 1348.31 | - | 393.26 | 1412.43 |
Plantaginaceae | Plantago lanceolata | - | - | - | - | - | - | 112.36 | - |
Poaceae | Alopecurus myosuroides | 168.54 | - | - | - | - | - | - | - |
Poaceae | Alopecurus pratensis | - | - | 56.18 | - | - | - | - | - |
Poaceae | Apera spica-venti | - | - | 337.08 | - | - | - | - | - |
Poaceae | Avena nuda | - | 5.00 | - | - | - | - | - | - |
Poaceae | Avena sterillis | 1011.24 | - | - | - | 224.72 | - | - | - |
Poaceae | Cynodon dactylon | 56.18 | - | - | - | - | - | - | - |
Poaceae | Digitaria sanguinalis * | - | 56.50 | 5112.36 | - | 337.08 | 3276.84 | - | 2824.86 |
Poaceae | Echinochloa crus-galli * | - | - | 674.16 | 112.99 | - | - | - | 16,045.20 |
Poaceae | Zea mays | - | - | 1797.75 | - | - | - | - | - |
Poaceae | Panicum repens * | 561.80 | - | - | - | - | - | - | 56.50 |
Poaceae | Setaria pumila * | 56.18 | 225.99 | 4213.48 | - | 280.90 | 1242.94 | 337.08 | 225.99 |
Poaceae | Setaria spp. * | - | 56.50 | 1966.29 | - | 449.44 | 56.50 | - | - |
Poaceae | Sorghum halepence * | - | - | 4269.66 | 56.50 | - | - | - | - |
Poaceae | Triticum aestivum * | 56.18 | 225.99 | - | - | 56.18 | - | - | - |
Polygonaceae | Bilderdykia convolvulus * | 6460.67 | 2542.37 | 786.52 | 395.48 | 730.34 | - | - | 169.49 |
Polygonaceae | Eriogonum racemon | - | - | - | - | - | - | 168.54 | - |
Polygonaceae | Polygonum aviculare *,‡ | 38,202.25 | 35,593.22 | 14,213.48 | 903.95 | 6516.85 | 1129.94 | 16,629.21 | 2937.85 |
Polygonaceae | Polygonum lapathifolium | - | - | - | - | 337.08 | - | - | - |
Polygonaceae | Polygonum persicaria | - | 56.50 | - | - | - | - | - | 56.50 |
Polygonaceae | Rumex sanguineus * | - | 10,677.97 | 56.18 | - | - | 225.99 | - | - |
Polygonaceae | Rumex sp. * | 56.18 | 169.49 | 112.36 | - | 617.98 | 56.50 | - | 56.50 |
Portulacaceae | Portulaca oleracea *,‡ | 9662.92 | 19,491.53 | 2921.35 | 734.46 | 898.88 | 564.97 | 10,224.72 | 4519.77 |
Primulaceae | Anagallis arvensis | - | - | 1348.31 | - | - | - | - | - |
Rosaceae | Rubus spp. | 56.18 | - | 168.54 | - | 112.36 | - | - | - |
Ranunculaceae | Consolida regalis * | 1910.11 | 1186.44 | - | - | - | - | - | - |
Rubiaceae | Galium aparine * | 505.62 | 112.99 | 56.18 | - | 168.54 | - | - | - |
Scrophulariaceae | Veronica arvensis. | 56.18 | - | - | - | - | - | - | - |
Scrophulariaceae | Veronica hederifolia. | 56.18 | - | - | - | - | - | - | - |
Scrophulariaceae | Veronica persica * | 14,719.10 | 6214.69 | 393.26 | - | 1460.67 | 225.99 | 3595.51 | 225.99 |
Solanaceae | Datura stramonium * | - | 112.99 | - | - | - | - | 337.08 | - |
Solanaceae | Solanum nigrum * | 224.72 | 960.45 | 898.88 | 338.98 | 1123.60 | 112.99 | 337.08 | - |
Zygophyllaceae | Tribulus terrestris | - | - | - | - | - | - | 56.18 | - |
Appendix B
- Flood, R.J. and Gates, S.C., 1986. Seed Identification Handbook, Official Seed Testing Station. National Institute Agricultural Botany. Publishing, Cambridge, UK.
- Lola P., 2003. Weeds Weed-Herbicides. Fate and behavior in the environment. Publications Modern Education.
- Seed collection of the Weed Laboratory of Department of Agriculture Crop Production and Rural Environment. University of Thessaly. (Professor P. Lolas).
- Seeds collected in the field
- Plant specimen and seed collections
- Scottish Crop Research Institute
- University of Abertay Dundee
- ASIS Arable Seed Identification System
- The Ohio State University. Department of Horticulture and Crop Science. Seed IDWorkshop
- University of Missouri Extension. Missouri Weed Seeds. Department of Agronomy Fred Fishel Kevin Bradley
- Seeds of Success Collections at the Bend Seed Extractory
- The seed identification web page. Paleoethnobotany Project
- Visual Identification of Small Oilseeds and Weed Seed Contaminants Grain Biology Bulletin No. 3
- Kavvadas S., 1956. Illustrated Botany—Botanic Dictionary, Volumes 1–9. Pegasus Publications, Athens.
- Vardavaki M. Zouzouli D., 2003. Anatomy and Morphology of plants. Ziti, Thessaloniki.
- Lola P., 2003. Weeds Weed-Herbicides. Fate and behavior in the environment. Publications Modern Education.
- The growers weed identification Handbook. Collective work. Publisher University of California, Division of Agriculture and Natural Resources.
- Flowers of Greece and the Balkans, A field Guide. Collective work. Publisher Oxford University.
- Bonnier G., 1989. La Grande Flora En Couleurs, Volumes 1–2. Publications Delachaux et Niestle.
- SRI Ilinois Council on food and Agricultural Research
- United States Department of Agriculture
- Weed Identification and Descriptions
- Utah State University extension. The weed web
- University of California, Agriculture and Natural Resources, Statewide IPM Program
References
- Sotherton, N.W. Land use changes and the decline of farmland wildlife: An appraisal of the set-aside approach. Biol. Conserv. 1998, 83, 259–268. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, G.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Robinson, R.A.; Hart, J.D.; Holland, J.M.; Parrott, D. Habitat use by seed-eating birds: A scale-dependent approach. Ibis 2004, 146, 87–98. [Google Scholar] [CrossRef]
- Pedersen, C.; Krøgli, S.V. The effect of land type diversity and spatial heterogeneity on farmland birds in Norway. Ecol. Indic. 2017, 75, 155–163. [Google Scholar] [CrossRef]
- Römermann, C.; Dutoit, T.; Poschlod, P.; Buisson, E. Influence of former cultivation on the unique Mediterranean steppe of France and consequences for conservation management. Biol. Conserv. 2005, 121, 21–33. [Google Scholar] [CrossRef]
- Chamberlain, D.E.; Fuller, R.J.; Bunce, R.G.H.; Duckworth, J.C.; Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England Wales. J. Appl. Ecol. 2000, 37, 771–788. [Google Scholar] [CrossRef] [Green Version]
- Donald, P.F.; Pisano, G.; Rayment, M.D.; Pain, D.J. The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric. Ecosyst. Environ. 2002, 89, 167–182. [Google Scholar] [CrossRef]
- Stephens, P.A.; Freckleton, R.P.; Watkinson, A.R.; Sutherland, W. Predicting the response of farmland bird populations to changing food supplies. J. Appl. Ecol. 2003, 40, 970–983. [Google Scholar] [CrossRef]
- Vickery, J.A.; Bradbury, R.B.; Henderson, I.G.; Eaton, M.A.; Grice, P.V. The role of agri-environment schemes and farm management practices in reversing the decline of farmland birds in England. Biol. Conserv. 2004, 119, 19–39. [Google Scholar] [CrossRef]
- Wretenberg, J.; Pärt, T.; Berg, Å. Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biol. Conserv. 2010, 143, 375–381. [Google Scholar] [CrossRef]
- Sálek, M.; Havlícek, J.; Riegert, J.; Nesporc, M.; Fuchs, R.; Kipson, M. Winter density habitat preferences of three declining granivorous farmland birds: The importance of the keeping of poultry dairy farms. J. Nat. Conserv. 2015, 24, 10–16. [Google Scholar] [CrossRef]
- Calvi, G.; Campedelli, T.; Florenzano, T.G.; Rossi, P. Evaluating the benefits of agri-environment schemes on farmland bird communities through a common species monitoring programme. A case study in northern Italy. Agric. Syst. 2018, 160, 60–69. [Google Scholar] [CrossRef]
- Gayer, C.; Kurucz, K.; Fischer, C.; Tscharntke, T.; Batáry, P. Agricultural intensification at local and landscape scales impairs farmland birds, but not skylarks (Alauda arvensis). Agric. Ecosyst. Environ. 2019, 277, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Seoane, S.; Osborne, P.E.; Baudry, J. Responses of birds of different biogeographic origins and habitat requirements to agricultural land abandonment in northern Spain. Biol. Conserv. 2002, 105, 333–344. [Google Scholar] [CrossRef]
- Lewis-Phillips, J.; Brooks, S.; Sayer, C.D.; McCrea, R.; Siriwardena, G.; Axmacher, J.C. Pond management enhances the local abundance and species richness of farmland bird communities. Agric. Ecosyst. Environ. 2019, 273, 130–140. [Google Scholar] [CrossRef]
- Stoate, C.; Beja, B.P.; Boatman, N.D.; Herzon, I. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef]
- Stanton, R.L.; Morrissey, C.A.; Clark, R.G. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ. 2018, 254, 244–254. [Google Scholar] [CrossRef]
- Tarjuelo, R.; Benítez-López, A.; Casas, F.; Martín, C.A.; García, J.T.; Vinuela, J.; Mougeot, F. Living in seasonally dynamic Farmland: The role of natural and semi-natural habitats in the movements and habitat selection of a declining bird. Biol. Conserv. 2020, 251, 108794. [Google Scholar] [CrossRef]
- Perkins, A.J.; Whittingham, M.J.; Bradbury, R.B.; Wilson, J.D.; Morris, A.J.; Barnett, P.R. Habitat characteristics affecting use of lowland agricultural grassland by birds in winter. Biol. Conserv. 2000, 95, 279–294. [Google Scholar] [CrossRef]
- Perkins, A.J.; Maggs, H.E.; Wilson, J.D. Winter bird use of seed-rich habitats in agri-environment schemes. Agric. Ecosyst. Environ. 2008, 126, 189–194. [Google Scholar] [CrossRef]
- Redhead, J.W.; Hinsley, S.A.; Beckmann, B.C.; Broughton, R.K.; Pywell, R.F. Effects of agri-environmental habitat provision on winter and breeding season abundance of famrland birds. Agric. Ecosyst. Environ. 2018, 251, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Butler, S.J.; Bradbury, R.B.; Whittingham, M.J. Stubble height affects the use of stubble fields by farmland birds. J. Appl. Ecol. 2005, 42, 469–476. [Google Scholar] [CrossRef]
- Hancock, M.H.; Duffield, S.; Boyle, J.; Wilson, J.D. The effect of harvest method on cereal stubble use by seed-eating birds in a High Nature Value farming system. Agric. Ecosyst. Environ. 2016, 219, 119–124. [Google Scholar] [CrossRef]
- McHugh, N.M.; Prior, M.; Grice, P.V.; Leather, S.R.; Holland, J.M. Agri-environmental measures and the breeding ecology of a declining farmland bird. Biol. Conserv. 2017, 212, 230–239. [Google Scholar] [CrossRef]
- Scherner, A.; Melander, B.; Kudsk, P. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil Tillage Res. 2016, 161, 135–142. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Raja, R.; Tripathi, R.; Shahid, M.; Mohanty, S.; Panda, B.B.; Bhattacharyya, P.; Nayak, A.K. Weed seed bank diversity and community shift in a four-decade-old fertilization experiment in rice–rice system. Ecol. Eng. 2016, 86, 135–145. [Google Scholar] [CrossRef]
- Hosseini, P.; Karimi, H.; Babaei, S.; Mashhadi, H.R.; Oveisi, M. Weed seed bank as affected by crop rotation and disturbance. Crop Prot. 2014, 64, 1–6. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Zambrana, E.; Tenorio, J.L. Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil Tillage Res. 2016, 161, 38–46. [Google Scholar] [CrossRef]
- Chamberlain, D.E.; Vickery, J.A.; Glue, D.E.; Robinson, R.A.; Conway, G.J.; Woodburn, R.J.W.; Cannon, A.R. Annual and seasonal trends in the use of garden feeders by birds in winter. Ibis 2005, 147, 563–575. [Google Scholar] [CrossRef]
- Siriwardena, G.M.; Calbrade, N.A.; Vickery, J.A.; Sutherland, W.J. The effect of the spatial distribution of winter seed food resources on their use by farmland birds. J. Appl. Ecol. 2006, 43, 628–639. [Google Scholar] [CrossRef]
- Siriwardena, G.M.; Stevens, D.K. Effects of habitat on the use of supplementary food by farmland birds in winter. Ibis 2004, 146, 144–154. [Google Scholar] [CrossRef]
- Henderson, I.G.; Vickery, J.A.; Carter, N. The use of winter bird crops by farmland birds in lowland England. Biol. Conserv. 2004, 118, 21–32. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; West, T.M.; Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric. Ecosyst. Environ. 2006, 113, 36–44. [Google Scholar] [CrossRef]
- Geiger, F.; de Snoo, G.R.; Berendse, F.; Guerrero, I.; Morales, M.B.; Onate, J.J.; Eggers, S.; Part, T.; Bommarco, R.; Bengtsson, J.; et al. Landscape composition influences farm management effects on farmland birds in winter: A pan-European approach. Agric. Ecosyst. Environ. 2010, 139, 571–577. [Google Scholar] [CrossRef]
- Moreira, F.; Beja, P.; Morgado, R.; Reino, L.; Gordinho, L.; Delgado, A.; Borralho, R. Effects of field management and landscape context on grassland wintering birds in Southern Portugal. Agric. Ecosyst. Environ. 2005, 109, 59–74. [Google Scholar] [CrossRef]
- Hyvönen, T.; Huusela-Veistola, E. Impact of seed mixture and mowing on food abundance for farmland birds in set-asides. Agric. Ecosyst. Environ. 2011, 143, 20–27. [Google Scholar] [CrossRef]
- Voudouri, A. The Value of Agro-Ecosystems for Biodiversity Outside the Growing Season: Comparative Assessment of Crops in the Elassona Region. Master’s Thesis, University of Thessaly, Volos, Greece, 2008; 113p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 15 June 2021).
- Bolker, B.; Robinson, D. Broom. Mixed: Tidying Methods for Mixed Models. R Package Version 0.2.6. 2020. Available online: https://CRAN.R-project.org/package=broom.mixed (accessed on 15 June 2021).
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation, R Package Version 1.0.6. 2021. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 15 June 2021).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, W. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with, S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. tidyr: Tidy Messy Data, R Package Version 1.1.3. 2021. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 15 June 2021).
- Ball, D.A. Weed seed bank response to tillage, herbicides, and crop rotation sequence. Weed Sci. 1992, 40, 654–659. [Google Scholar] [CrossRef]
- Cunningham, H.M.; Bradbury, R.B.; Chaney, K.; Wilcox, A. Effect of non-inversion tillage on field usage by UK farmland birds in winter. Bird Study 2005, 52, 173–179. [Google Scholar] [CrossRef]
- Shrestha, A. Weed Seed Banks and Their Role in Future Weed Management; UC Statewide IPM Program: Parlier, CA, USA, 2001. [Google Scholar]
- Whittingham, M.J.; Devereux, C.L.; Evans, A.D.; Bradbury, R.B. Altering perceived predation risk food availability: Management prescriptions to benefit farmland birds on stubble fields. J. Appl. Ecol. 2006, 43, 640–650. [Google Scholar] [CrossRef]
- Donald, P.F.; Sanderson, F.J.; Burfield, I.J.; van Bommel, F.P.J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 2006, 116, 189–196. [Google Scholar] [CrossRef]
- Wilson, J.D.; Whittingham, M.J.; Bradbury, R.B. The management of crop structure: A general approach to reversing the impacts of agricultural intensification on birds. Ibis 2005, 147, 453–463. [Google Scholar] [CrossRef]
- Zanin, G.; Otto, S.; Riello, L.; Borin, M. Ecological interpretation of weed flora dynamics under different tillage systems. Agric. Ecosyst. Environ. 1997, 66, 177–188. [Google Scholar] [CrossRef]
- Ghersa, C.M.; Martínez-Ghersa, M.A. Ecological correlates of weed seed size and persistence in the soil under different tiling systems: Implications for weed management. Field Crops Res. 2000, 67, 141–148. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds. Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 1998; 666p. [Google Scholar]
- Field, R.H.; Benke, S.; Bádonyi, K.; Bradbury, R.B. Influence of conservation tillage on winter bird use of arable fields in Hungary. Agric. Ecosyst. Environ. 2007, 120, 399–404. [Google Scholar] [CrossRef]
- Reuss, S.A.; Buhler, D.D.; Gunsolus, J.L. Effects of soil depth and aggregate size on weed seed distribution and viability in a silt loam soil. Appl. Soil Ecol. 2001, 16, 209–217. [Google Scholar] [CrossRef]
- Conn, J.S. Weed seed bank affected by tillage intensity for barley in Alaska. Soil Tillage Res. 2006, 90, 156–161. [Google Scholar] [CrossRef]
- Carter, M.R.; Ivany, J.A. Weed seed bank composition under three long-term tillage regimes on a fine sandy loam in Atlantic Canada. Soil Tillage Res. 2006, 90, 29–38. [Google Scholar] [CrossRef]
- Orłowski, G.; Czarnecka, J. Winter diet of reed bunting Emberiza schoeniclus in fallow and stubble fields. Agric. Ecosyst. Environ. 2007, 118, 244–248. [Google Scholar] [CrossRef]
- Marino, P.C.; Westerman, P.R.; Pinkert, C.; van der Werf, W. Influence of seed density and aggregation on post-dispersal weed seed predation in cereal fields. Agric. Ecosyst. Environ. 2005, 106, 17–25. [Google Scholar] [CrossRef]
- Robinson, R.A.; Sutherland, W.J. The winter distribution of seed-eating birds: Habitat structure, seed density and seasonal depletion. Ecography 1999, 22, 447–454. [Google Scholar] [CrossRef]
- Moorcroft, D.; Whittingham, M.J.; Bradbury, R.B.; Wilson, J.D. The selection of stubble fields by wintering granivorous birds reflects vegetation cover food abundance. J. Appl. Ecol. 2002, 39, 535–547. [Google Scholar] [CrossRef]
- Marone, L.; Rossi, B.E.; De Casenave, J.L. Granivore impact on soil-seed reserves in the central Monte desert. Argentina Funct. Ecol. 1998, 12, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Broughton, R.K.; Chetcuti, J.; Burgess, M.D.; Gerard, F.F.; Pywell, R.F. A regional-scale study of associations between farmland birds and woody networks of hedgerows and trees. Agric. Ecosyst. Environ. 2021, 310, 107300. [Google Scholar] [CrossRef]
- Vickery, J.A.; Feber, R.E.; Fuller, R.J. Arable field margins managed for biodiversity conservation: A review of food resource provision for farmland birds. Agric. Ecosyst. Environ. 2009, 133, 1–13. [Google Scholar] [CrossRef]
- Orrock, J.L.; Levey, D.J.; Danielson, B.J.; Damschen, E.I. Seed predation not seed dispersal explains the landscape-level abundance of an early-successional plant. J. Ecol. 2006, 94, 838–845. [Google Scholar] [CrossRef]
- Dunning, J.B.; Brown, J.H. Summer rainfall and winter sparrow densities: A test of the food limitation hypothesis. Auk 1982, 99, 123–129. [Google Scholar] [CrossRef]
- Lortie, C.L.; Ganey, D.T.; Kotler, B.P. The effects of gerbil foraging on the natural seedbank and consequences on the annual plant community. Oikos 2000, 90, 399–407. [Google Scholar] [CrossRef]
- Teillard, F.; Antoniucci, D.; Jiguet, F.; Tichit, M. Contrasting distributions of grassland and arable birds in heterogeneous farmlands: Implications for conservation. Biol. Conserv. 2014, 176, 243–251. [Google Scholar] [CrossRef]
- Sanou, L.; Salvadogo, P.; Zida, D.; Thiombiano, A. Contrasting land use systems influence the soil seed bank composition and density in a rural landscape mosaic in West Africa. Flora 2019, 250, 79–90. [Google Scholar] [CrossRef]
- Raunkiaer, C. The Life Form of Plants and Statistical Plant Geography; Clarendon Press: Oxford, UK, 1934. [Google Scholar]
- Alsherif, E.A.; Ayesh, A.M.; Rawi, S.M. Floristic composition, life form and chorology of plant life at Khulais region, Western Saudi Arabia. Pak. J. Bot. 2013, 45, 29–38. [Google Scholar]
- Carni, A.; Matevski, V.; Silc, U.; Custerevska, R. Early spring ephemeral therophytic non-nitrophilous grasslands as a habitat of various species of Romulea in the southern Balkans. Acta Bot. Croat. 2014, 73, 107–129. [Google Scholar]
- Mehrvarz, S.S.; Nodehi, M.A. A floristic study of the Sorkhankol Wildlife Refuge, Guilan Province. Iran. Caspian J. Environ. Sci. 2015, 13, 183–196. [Google Scholar]
- Sultan-Ud-Din, A.H.; Haidar, A.; Hamid, A. Floristic composition and life form classes of district Shangla, Khyber Pakhtunkhwa, Pakistan. J. Biodivers. Environ. Sci. 2016, 8, 187–206. [Google Scholar]
- Wilson, J.D.; Morris, A.J.; Arroyo, B.E.; Clark, S.C.; Bradbury, R.B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 1999, 75, 13–30. [Google Scholar] [CrossRef]
- Holland, J.M.; Hutchison, M.A.S.; Smith, B.; Aebischer, N.J. A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Ann. Appl. Biol. 2006, 148, 49–71. [Google Scholar] [CrossRef]
- Wilson, J.D.; Evans, J.; Browne, S.J.; King, J.R. Territory distribution breeding success of skylarks Alauda arvensis on organic intensive farmland in southern England. J. Appl. Ecol. 1997, 34, 1462–1478. [Google Scholar] [CrossRef]
Shannon Entropy | ||||||
Variable contrast | npar | logLik | deviance | Chisq | Df | Pr (>Chisq) |
season + habitat | 6 | −127.29 | 254.57 | |||
season + habitat + (1 | plots) | 7 | −121.41 | 242.83 | 11.7466 | 1 | 0.0006095 ** |
season * habitat + (1 | plots) | 10 | −118.27 | 236.53 | 6.2956 | 3 | 0.0980824 |
Seed Abundance | ||||||
Variable contrast | npar | logLik | deviance | Chisq | Df | Pr (>Chisq) |
season + habitat | 6 | −1099.8 | 2199.5 | |||
season + habitat + (1 | plots) | 7 | −1054.5 | 2109 | 90.5848 | 1 | <2 × 10−16 ** |
season * habitat + (1 | plots) | 10 | −1053.5 | 2107.1 | 1.8701 | 3 | 0.5998 |
Shannon Entropy | ||
Variable contrast | df | AIC |
season + habitat | 6 | 2211.542 |
season + habitat + (1 | plots) | 7 | 2122.957 |
season * habitat + (1 | plots) | 10 | 2127.087 |
Seed Abundance | ||
Variable contrast | df | AIC |
season + habitat | 6 | 2211.542 |
season + habitat + (1 | plots) | 7 | 2122.957 |
season * habitat + (1 | plots) | 10 | 2127.087 |
Shannon Entropy | ||||||||
Effect | Term | Estimate | Std. Error | Statistic | df | p Value | Conf. Low | Conf. High |
fixed | (Intercept) | 4.713 | 0.442 | 16.516 | 34.476 | 6.01 × 10−18 | 3.921 | 5.665 |
fixed | Season winter | 0.874 | 0.080 | −1.462 | 38.114 | 0.152 | 0.731 | 1.047 |
fixed | Habitat Clover | 1.019 | 0.121 | 0.157 | 27.754 | 0.876 | 0.807 | 1.287 |
fixed | Habitat Maize | 0.877 | 0.095 | −1.211 | 26.078 | 0.236 | 0.709 | 1.085 |
fixed | Habitat Tillage | 0.861 | 0.096 | −1.341 | 32.468 | 0.189 | 0.692 | 1.071 |
Seed Abundance | ||||||||
Effect | Term | Estimate | Std. Error | Statistic | p Value | Conf. Low | Conf. High | |
fixed | (Intercept) | 72.366 | 18.403 | 16.837 | 1.30 × 10−63 | 43.962 | 119.123 | |
fixed | Season winter | 0.434 | 0.106 | −3.415 | 0.001 | 0.268 | 0.700 | |
fixed | Habitat Clover | 1.444 | 0.485 | 1.093 | 0.275 | 0.747 | 2.789 | |
fixed | Habitat Maize | 1.061 | 0.327 | 0.190 | 0.849 | 0.579 | 1.942 | |
fixed | Habitat Tillage | 0.600 | 0.182 | −1.679 | 0.093 | 0.331 | 1.089 |
Post-Hoc Comparisons | ||||||
---|---|---|---|---|---|---|
Term | Contrast | Null. Value | Estimate | Std. Error | Statistic | Adj. p Value |
Season | Winter—Spring | 0 | −0.134 | 0.092 | −1.461 | 0.144 |
Habitat | Clover—Cereals | 0 | 0.019 | 0.119 | 0.157 | 0.999 |
Maize—Cereals | 0 | −0.131 | 0.108 | −1.211 | 0.619 | |
Tillage—Cereals | 0 | −0.149 | 0.111 | −1.342 | 0.535 | |
Maize—Clover | 0 | −0.150 | 0.126 | −1.188 | 0.633 | |
Tillage—Clover | 0 | −0.168 | 0.128 | −1.311 | 0.554 | |
Tillage—Maize | 0 | −0.018 | 0.117 | −0.154 | 0.999 |
Habitat | Season | Mean Shannon Entropy | Median Shannon Entropy | Prediction Adjusted | Predicted Unadjusted |
---|---|---|---|---|---|
Cereals | spring | 1.69 | 1.63 | 1.63 | 1.55 |
Cereals | winter | 1.34 | 1.39 | 1.37 | 1.56 |
Clover | spring | 1.53 | 1.58 | 1.56 | 1.42 |
Clover | winter | 1.47 | 1.63 | 1.46 | 1.40 |
Maize | spring | 1.08 | 1.20 | 1.29 | 1.42 |
Maize | winter | 1.35 | 1.37 | 1.32 | 1.43 |
Tillage | spring | 1.43 | 1.44 | 1.41 | 1.28 |
Tillage | winter | 1.21 | 1.31 | 1.22 | 1.27 |
Post-Hoc Comparisons | ||||||
---|---|---|---|---|---|---|
Term | Contrast | Null. Value | Estimate | Std. Error | Statistic | Adj. p Value |
Season | Winter—Spring | 0 | −0.835 | 0.245 | −3.415 | 0.0006 * |
Habitat | Clover—Cereals | 0 | 0.367 | 0.336 | 1.093 | 0.693 |
Maize—Cereals | 0 | 0.059 | 0.309 | 0.190 | 0.997 | |
Tillage—Cereals | 0 | −0.510 | 0.304 | −1.679 | 0.334 | |
Maize—Clover | 0 | −0.308 | 0.356 | −0.867 | 0.821 | |
Tillage—Clover | 0 | −0.877 | 0.350 | −2.505 | 0.059 | |
Tillage—Maize | 0 | −0.569 | 0.320 | −1.775 | 0.284 |
Habitat | Season | Mean Seed Abundance | Median Seed Abundance | Prediction Adjusted | Predicted Unadjusted |
---|---|---|---|---|---|
Cereals | spring | 89.7 | 87 | 87.7 | 72.4 |
Cereals | winter | 41.5 | 28 | 39.6 | 31.4 |
Clover | spring | 96.5 | 90 | 96.9 | 104.5 |
Clover | winter | 52.7 | 45 | 51.9 | 45.3 |
Maize | spring | 125.3 | 104.5 | 111.1 | 76.7 |
Maize | winter | 35.1 | 26 | 34.5 | 33.3 |
Tillage | spring | 37.2 | 37 | 38.6 | 43.4 |
Tillage | winter | 22.1 | 12 | 19.7 | 18.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voudouri, A.; Chaideftou, E.; Sfougaris, A. Topsoil Seed Bank as Feeding Ground for Farmland Birds: A Comparative Assessment in Agricultural Habitats. Land 2021, 10, 967. https://doi.org/10.3390/land10090967
Voudouri A, Chaideftou E, Sfougaris A. Topsoil Seed Bank as Feeding Ground for Farmland Birds: A Comparative Assessment in Agricultural Habitats. Land. 2021; 10(9):967. https://doi.org/10.3390/land10090967
Chicago/Turabian StyleVoudouri, Aikaterini, Evgenia Chaideftou, and Athanassios Sfougaris. 2021. "Topsoil Seed Bank as Feeding Ground for Farmland Birds: A Comparative Assessment in Agricultural Habitats" Land 10, no. 9: 967. https://doi.org/10.3390/land10090967
APA StyleVoudouri, A., Chaideftou, E., & Sfougaris, A. (2021). Topsoil Seed Bank as Feeding Ground for Farmland Birds: A Comparative Assessment in Agricultural Habitats. Land, 10(9), 967. https://doi.org/10.3390/land10090967