Soil Contamination in the Problem Areas of Agrarian Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Assays and Data Analyses
3. Results and Discussion
3.1. Soil Reaction and the Total Concentration of Risk Elements in Soil
3.2. Assessment of Soil Pollution
3.3. Assessment of Soil Contamination
4. Conclusions
- The average Igeo values ranged from −1.21 to 3.04, and the content of risk elements increased based on the average Igeo values in the following order Cr < Hg < Zn < Pb < Ni < Cu < Cd. Igeo values for Cd ranged from 1.24 to 5.22, indicating that there was mild-to-extreme contamination at all sites;
- The average of the EF values ranged from 1.26 to 19.55; we found the most significant enrichment in the order of Cd > Cu > Pb > Ni > Zn > Hg > Cr; EF values > 40 were found at Cd in the vicinity of the landfill and sludge pond, where iron ore slag and copper metallurgical waste were deposited, indicating extremely high enrichment;
- The calculated Cif and Cd values indicated a very high degree of soil contamination near the nickel smelter landfill, an industrial metallurgical plant and long-term active mines;
- HCA was identified in accordance with the monitored environmental parameters in relation to the area and common source of pollution by three groups of risk elements;
- The study areas pose a serious risk not only to the soil but also to groundwater and biota due to the prevailing low soil reaction, which increases the mobility of toxic elements;
- The study provides important results that can support the development of effective strategies for the management, control and remediation of endangered areas at regional and national levels.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sastre, J.; Sahuquillo, A.; Vidal, M.; Rauret, G. Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal. Chim. Acta 2002, 462, 59–72. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, A.; Shaheen, S.M.; Ok, Y.S.; Rinklebe, J. Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. Sci. Total. Environ. 2018, 624, 1059–1071. [Google Scholar] [CrossRef]
- RoyChowdhury, A.; Datta, R.; Sarkar, D. Heavy Metal Pollution and Remediation. Green Chem. 2018, 359–373. [Google Scholar] [CrossRef]
- Zhou, H.-Y.; Peng, X.-T.; Pan, J.-M. Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China. Cont. Shelf Res. 2004, 24, 1857–1875. [Google Scholar] [CrossRef]
- Reimann, C.; de Caritat, P. Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Sci. Total. Environ. 2005, 337, 91–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, A.Z.; Cen, T.; Li, X.; He, M.; Li, D.; Chen, J. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environ. Pollut. 2018, 237, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environ. Pollut. 2017, 230, 329–338. [Google Scholar] [CrossRef]
- Chopin, E.I.B.; Alloway, B.J. Distribution and Mobility of Trace Elements in Soils and Vegetation around the Mining and Smelting Areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air Soil Pollut. 2007, 182, 245–261. [Google Scholar] [CrossRef]
- Abdu, N.; Abdullahi, A.A.; Abdulkadir, A. Heavy metals and soil microbes. Environ. Chem. Lett. 2017, 15, 65–84. [Google Scholar] [CrossRef]
- Jaiswal, A.; Verma, A.; Jaiswal, P. Detrimental Effects of Heavy Metals in Soil, Plants, and Aquatic Ecosystems and in Humans. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Noskovič, J.; Chlpík, J.; Jedlovská, L.; Lacko-Bartošová, M.; Nozdrovický, L.; Ondrišík, P.; Porhajašová, J.; Rakovská, A.; Sklenár, Š.; Streďanská, A.; et al. Ochrana a Tvorba Životného Prostredia/Environmental Protection And Creation; Slovenská poľnohospodárska univerzita v Nitre: Nitra, Slovakia, 2012. [Google Scholar]
- Kashem, A.; Singh, B.R.; Kawai, S. Mobility and distribution of cadmium, nickel and zinc in contaminated soil profiles from Bangladesh. Nutr. Cycl. Agroecosyst. 2006, 77, 187–198. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.; Ren, L.; Zhou, Y.; Gao, J.; Luo, L.; Yang, Y.; Peng, Q.; Huang, H.; Chen, A. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J. Environ. Manag. 2019, 242, 121–130. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef] [PubMed]
- Ahumada, I.; Mendoza, J.; Escudero, P.; Ascar, L. Effect of acetate, citrate, and lactate incorporation on distribution of cadmium and copper chemical forms in soil. Commun. Soil Sci. Plant Anal. 2001, 32, 771–785. [Google Scholar] [CrossRef]
- Fazekašová, D.; Barančíková, G.; Torma, S.; Ivanová, M.; Manko, P. Chemické a Environmentálne Aspekty Zložiek Životného Prostredia a Krajiny/Chemical and Environmental Aspects of the Environment and Landscape; University of Prešov: Prešov, Slovakia, 2014. [Google Scholar]
- Ďurža, O. Využitie Pôdnej Magnetometrie v Environmentálnej Geochémii Ťažkých Kovov/Use of Soil Magnetometry in Environmental Geochemistry of Heavy Metals. Acta Geol. Univ. Comen. 2003, 58, 29–55. [Google Scholar]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Mahurpawar, M. Effects of heavy metals on human health. Int. J. Res. Granthaalayah 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Kafka, Z.; Punčochářová, J. Těžké kovy v přírodě a jejich toxicita/Heavy metals in nature and their toxicity. Chem. Listy 2002, 96, 611–617. [Google Scholar]
- Frankovská, J. Čiastkový monitorovací systém geologických faktorov/Partial monitoring system of geological factors. In Podsystém 03 Antropogénne Sedimenty Charakteru Environmentálnych Záťaží. Záverečná Správa za Rok 2008/Subsystem 03 Anthropogenic Sediments Character of Environmental Loads. Final Report for 2008; Štátny Geologický Ústav Dionýza Štúra: Bratislava, Slovakia, 2009. [Google Scholar]
- Michaeli, E.; Boltižiar, M. Environmentálne záťaže/Environmental Burdens. In Potraviny Špecifického Charakteru/Food Of A Specific Character; Dudríková, E., Michaeli, E., Eds.; Univerzita Veterinárneho Lekárstva a Farmácie v Košiciach: Košice, Slovakia, 2011; pp. 80–105. [Google Scholar]
- Wojciechowska, E.; Nawrot, N.; Walkusz-Miotk, J.; Matej-Łukowicz, K.; Pazdro, K. Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors. Sustainability 2019, 11, 563. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Shi, L.; Yang, G.; You, M.; Vasseur, L. Ecological Risk Assessment of Soil Heavy Metals and Pesticide Residues in Tea Plantations. Agriculture 2020, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Mugoša, B.; Đurović, D.; Nedović-Vuković, M.; Barjaktarović-Labović, S.; Vrvić, M. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro. Int. J. Environ. Res. Public Health 2016, 13, 393. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Rahman, S.H.; Khanam, D.; Adyel, T.M.; Islam, M.S.; Ahsan, M.A.; Akbor, M.A. Assessment of Heavy Metal Contamination of Agricultural Soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of Seasonal Variation and Indices. Appl. Sci. 2012, 2, 584–601. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Huang, C.; Chen, Z.; Bao, K. Distribution, Ecological Risk Assessment, and Bioavailability of Cadmium in Soil from Nansha, Pearl River Delta, China. Int. J. Environ. Res. Public Health 2019, 16, 3637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolezalova Weissmannová, H.; Mihočová, S.; Chovanec, P.; Pavlovský, J. Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic. Int. J. Environ. Res. Public Health 2019, 16, 4495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Klinda, J.; Mičík, T.; Némethová, M.; Slámková, M. Environmentálna Regionalizácia Slovenskej Republiky/Environmental Regionalization of the Slovak Republic; Ministerstvo Životného Prostredia: Bratislava, Slovakia, 2016. [Google Scholar]
- Šebáň, O.; Doležal, I.; Buzinkai, M.; Včelková, T.; Paulen, T. Transformácia Uhoľného Regiónu Horná Nitra/ Transformation of the Horná Nitra Coal Region. Available online: https://www.novaky.sk/download/1554464344Transformacia-Hornej-Nitry_Akcny-plan_Draft_v1.pdf (accessed on 20 August 2021).
- Slovak Hydrometeorological Institute. Climate Atlas of Slovakia; SHI: Bratislava, Slovakia, 2015. [Google Scholar]
- Sobocká, J. Morfogenetický Klasifikačný Systém Pôd Slovenska/Morphogenetic Classification System of Slovak Soils; Výskumný Ústav Pôdoznalectva a Ochrany Pôdy: Bratislava, Slovakia, 2000. [Google Scholar]
- Hájková, V. Staré Environmentálne Záťaže/Old Environmental Burdens. Available online: http://www.prologno.sk/proenviro/view.php?cisloclanku=2006081601 (accessed on 20 August 2021).
- Auxt, A.; Minařik, M.; Hertlová, L.; Kamas, J.; Machala, A.; Polčan, I.; Filo, J.; Gretsch, J. Prieskum Pravdepodobnej Environmentálnej Záťaže PE(001) Bošany—Skládka Koželužní (SK/EZ/PE/637), PE (1874) Bošany—Skládka Koželužní ll (SK/EZ/PE/1874), Záverečná Správa Geologickej Úlohy s Analýzou Rizika, Názov Geologickej Úlohy: Prieskum Environmentálnych záťaží na Vybraných Lokalitách Slovenskej Republiky/Probable Environmental Burden Survey PE (001) Bošany — Tannery Landfill (SK/EZ/PE/637), PE (1874) Bošany — Tannery Landfill ll (SK / EZ / PE / 1874), Final Report of the Geological Task with Risk Analysis, Title Geological Task: Survey of Environmental Loads in Selected Localities of the Slovak Republic; HES-COMGEO: Bratislava, Slovakia; Cenvis: Bratislava, Slovakia, 2015. [Google Scholar]
- Lapin, M.; Faško, P.; Melo, M.; Št’astný, P.; Tomlain, J. Climate Areas. In Atlas of the Slovak Republic; Ministry of Environment of the Slovak Republic: Bratislava, Slovakia, 2002. [Google Scholar]
- Šály, R.; Bedrna, Z.; Bublinec, E.; Čurlík, J.; Fulajtár, E.; Gregor, J.; Hanes, J.; Juráni, B.; Kukla, J.; Račko, J.; et al. Morfogenetický Klasifikačný Systém Pôd Slovenska/ Morphogenetic Soil Classification System of Slovakia; VÚPOP: Bratislava, Slovakia, 2000. [Google Scholar]
- Ministry of Agriculture Decree No. 338/2005 Coll., Slovak Republic. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2005/338/20060101.html (accessed on 20 August 2021).
- Slovak Technical Standard ISO 10381-6. Available online: https://www.iso.org/standard/43691.html (accessed on 20 August 2021).
- Kobza, J.; Barančíková, G.; Čumová, L.; Dodok, R.; Hrivňaková, K.; Makovníková, J. Methods of Determining Indicators of Agrochemical Soil Properties; SSCRI: Bratislava, Slovakia, 2011. [Google Scholar]
- Act of the National Council of the Slovak Republic No. 220/2004 Coll. Available online: https://www.mpsr.sk/zakon-c-220-2004-z-z/27-23-27-8366/ (accessed on 20 August 2021).
- Müller, G. The heavy metal pollution of the sediments of Neckars and its tributary: A stocktaking. Chem. Zeit. 1981, 105, 157–164. [Google Scholar]
- Salomons, W.; Förstner, U. Sediments and the transport of metals. In Metals in the Hydrocycle; Springer: Berlin, Germany, 1984; pp. 63–98. [Google Scholar]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Buat-Menard, P.; Chesselet, R. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet. Sci. Lett. 1979, 42, 399–411. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Čurlík, J.; Šefčík, P. Geochemický Atlas Slovenskej Republiky/Geochemical Atlas of the Slovak Republic; SSCRI: Bratislava, Slovakia, 1999. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Kobza, J.; Barančíková, G.; Makovníková, J.; Pálka, B.; Styk, J.; Širáň, M. Current State and Development of Land Degradation Processes Based on Soil Monitoring in Slovakia. Agriculture 2017, 63, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Blaser, P.; Zimmermann, S.; Luster, J.; Shotyk, W. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci. Total. Environ. 2000, 249, 257–280. [Google Scholar] [CrossRef]
- Smith, I.C.; Carson, B.L. Trace Metals in the Environment. Ann Arbor Sci. Publ. 1981, 6. Available online: https://catalogue.nla.gov.au/Record/913912 (accessed on 20 August 2021).
- Spahić, M.M.P.; Sakan, S.; Glavaš-Trbić, B.M.; Tančić, P.I.; Škrivanj, S.B.; Kovačević, J.R.; Manojlović, D.D. Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia). J. Environ. Sci. Health Part A 2019, 54, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Machender, G.; Dhakate, R.; Prasanna, L.; Govil, P.K. Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India. Environ. Earth Sci. 2011, 63, 945–953. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, Z.; Xing, Z.; Li, S.; Li, X.; Liu, Y. Comparison of Models for Spatial Distribution and Prediction of Cadmium in Subtropical Forest Soils, Guangdong, China. Land 2021, 10, 906. [Google Scholar] [CrossRef]
- Alloway, B.J. The origins of heavy metals in soils. In Heavy Metals in Soils; Blackie Academic and Professional: London, UK, 1995; pp. 33–39. [Google Scholar]
- Adriano, D.C. Chromium. In Trace Elements in Terrestrial Environments; Springer: New York, NY, USA, 2001; pp. 315–348. [Google Scholar]
- Wang, N.; Han, J.; Wei, Y.; Li, G.; Sun, Y. Potential Ecological Risk and Health Risk Assessment of Heavy Metals and Metalloid in Soil around Xunyang Mining Areas. Sustainability 2019, 11, 4828. [Google Scholar] [CrossRef] [Green Version]
Localities | Zn | Cu | Ni | Cr | Pb | Cd | Hg | pH/H2O |
---|---|---|---|---|---|---|---|---|
CH1 | 68.00 | 19.00 | 32.00 | 92.00 | 27.00 | 2.14 | 0.04 | 7.4 |
CH2 | 68.00 | 19.00 | 32.00 | 92.00 | 27.00 | 2.57 | 0.04 | 6.7 |
CI1 | 34.00 | 7.00 | 16.00 | 52.00 | 13.00 | 1.65 | 0.08 | 3.5 |
CI2 | 34.00 | 7.00 | 16.00 | 52.00 | 13.00 | 1.06 | 0.07 | 3.4 |
BO1 | 53.00 | 18.00 | 32.00 | 89.00 | 13.00 | 1.39 | 0.02 | 8.2 |
SE1 | 91.00 | 36.00 | 61.00 | 138.00 | 21.00 | 9.59 | 0.04 | 8.7 |
SL1 | 106.00 | 67.00 | 32.00 | 100.00 | 16.00 | 0.70 | 1.10 | 6.1 |
KR1 | 47.00 | 32.00 | 2.50 | 36.00 | 10.00 | 4.50 | 4.26 | 6.6 |
KR2 | 47.00 | 32.00 | 2.50 | 36.00 | 10.00 | 1.30 | 1.99 | 5.9 |
Mean | 60.89 | 26.33 | 25.11 | 76.33 | 16.67 | 2.77 | 0.85 | 6.3 |
Min | 34.00 | 7.00 | 2.50 | 36.00 | 10.00 | 0.70 | 0.02 | 3.4 |
Max | 106.00 | 67.00 | 61.00 | 138.00 | 27.00 | 9.59 | 4.26 | 8.7 |
SD | 24.84 | 18.49 | 18.26 | 34.37 | 6.73 | 2.79 | 1.45 | 1.85 |
Localities | Zn | Cu | Co | Ni | Cr | Pb | Cd | Hg | Fe | Mn |
---|---|---|---|---|---|---|---|---|---|---|
CH1 | 69.70 | 21.50 | 21.90 | 19.90 | 10.80 | 18.50 | 2.14 | 0.04 | 52,247.10 | 1057.40 |
CH2 | 73.40 | 33.30 | 30.80 | 22.70 | 12.80 | 25.30 | 2.57 | 0.04 | 58,078.40 | 1750.40 |
CI1 | 38.60 | 20.10 | 7.40 | 26.10 | 20.30 | 21.40 | 1.65 | 0.08 | 29,826.50 | 189.90 |
CI2 | 35.80 | 19.50 | 8.40 | 27.70 | 21.60 | 17.60 | 1.06 | 0.07 | 30,102.50 | 166.20 |
BO1 | 40.50 | 16.00 | 12.20 | 39.30 | 24.10 | 18.30 | 1.39 | 0.02 | 20,345.30 | 724.50 |
SE1 | 123.90 | 39.50 | 382.00 | 2592.70 | 1254.80 | 81.90 | 9.59 | 0.04 | 218,148.30 | 2723.20 |
SL1 | 145.00 | 153.00 | 16.00 | 36.00 | 90.00 | 37.00 | 1.10 | 0.57 | 46,200.00 | 1700.00 |
KR1 | 856.00 | 749.00 | 5.00 | 22.00 | 49.00 | 215.00 | 2.80 | 3.97 | 28,700.00 | 600.00 |
KR2 | 353.00 | 312.00 | 5.00 | 32.00 | 94.00 | 118.00 | 1.90 | 2.49 | 36,700.00 | 1700.00 |
Mean | 192.88 | 151.54 | 54.30 | 313.16 | 175.27 | 61.44 | 2.69 | 0.81 | 57,816.46 | 1179.07 |
Min | 35.80 | 16.00 | 5.00 | 19.90 | 10.80 | 17.60 | 1.06 | 0.02 | 20,345.30 | 166.20 |
Max | 856.0 | 749.0 | 382.0 | 2592.7 | 1254.8 | 215.0 | 9.6 | 3.97 | 218,148.3 | 2723.2 |
SD | 267.76 | 244.75 | 123.18 | 854.85 | 406.07 | 67.39 | 2.66 | 1.43 | 61,361.22 | 852.54 |
SE | 20,453.74 | 284.18 | 89.25 | 81.58 | 41.06 | 284.95 | 135.36 | 22.46 | 0.89 | 0.48 |
Limit * | 150 | 60 | 15 | 50 | 150 | 70 | 0.7 | 0.5 | - | - |
Localities | Zn | Cu | Ni | Cr | Pb | Cd | Hg | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Igeo | EF | Igeo | EF | Igeo | EF | Igeo | EF | Igeo | EF | Igeo | EF | Igeo | EF | |
CH1 | −0.55 | 0.63 | −0.41 | 0.70 | −1.27 | 0.38 | −3.68 | 0.07 | −1.13 | 0.42 | 1.51 | 2.63 | −2.67 | 0.15 |
CH2 | −0.47 | 0.40 | 0.22 | 0.65 | −1.08 | 0.26 | −3.43 | 0.05 | −0.68 | 0.35 | 1.78 | 1.91 | −2.66 | 0.09 |
CI1 | −0.40 | 5.98 | 0.94 | 15.12 | 0.12 | 8.59 | −1.94 | 2.06 | 0.13 | 8.67 | 1.87 | 28.96 | 0.40 | 10.44 |
CI2 | −0.51 | 6.34 | 0.89 | 16.76 | 0.21 | 10.42 | −1.85 | 2.50 | −0.15 | 8.15 | 1.24 | 21.26 | 0.23 | 10.56 |
BO1 | −0.97 | 0.69 | −0.75 | 0.80 | −0.29 | 1.10 | −2.47 | 0.24 | −0.09 | 1.26 | 2.21 | 6.24 | −3.62 | 0.11 |
SE1 | −0.14 | 0.44 | −0.45 | 0.36 | 4.82 | 13.89 | 2.60 | 2.97 | 1.38 | 1.27 | 5.00 | 15.67 | −1.92 | 0.13 |
SL1 | −0.53 | 1.25 | 0.61 | 2.08 | −0.42 | 1.03 | −0.74 | 0.82 | 0.62 | 2.11 | 3.87 | 20.08 | −0.14 | 1.24 |
KR1 | −0.67 | 20.81 | 3.96 | 26.75 | 2.55 | 10.06 | −0.14 | 1.56 | 3.84 | 24.57 | 5.22 | 64.00 | 0.18 | 1.94 |
KR2 | −0.82 | 3.00 | 2.70 | 3.90 | 3.09 | 5.12 | 0.80 | 1.04 | 2.98 | 4.72 | 4.66 | 15.20 | −0.50 | 0.43 |
Mean | −0.56 | 4.39 | 0.86 | 7.46 | 0.86 | 5.65 | −1.21 | 1.26 | 0.77 | 5.72 | 3.04 | 19.55 | −1.19 | 2.79 |
Min | −0.97 | 0.40 | −0.75 | 0.36 | −1.27 | 0.26 | −3.68 | 0.05 | −1.13 | 0.35 | 1.24 | 1.91 | −3.62 | 0.09 |
Max | −0.14 | 20.81 | 3.96 | 26.75 | 4.82 | 13.89 | 2.60 | 2.97 | 3.84 | 24.57 | 5.22 | 64.00 | 0.40 | 10.56 |
SD | 0.24 | 6.59 | 1.56 | 9.66 | 2.12 | 5.22 | 2.05 | 1.08 | 1.67 | 7.75 | 1.63 | 18.96 | 1.53 | 4.42 |
SE | 0.08 | 2.20 | 0.52 | 3.22 | 0.70 | 1.74 | 0.68 | 0.36 | 0.56 | 2.58 | 0.08 | 2.20 | 0.52 | 3.22 |
Contamination Factor (Cif) | ||||||||
---|---|---|---|---|---|---|---|---|
Very high | Considerable | Moderate | Low | |||||
Localities | Cd | Cif ≥ 6 | 3 ≤ Cif < 6 | 1 ≤ Cif < 3 | Cif < 1 | |||
Degree of contamination (Cd) | Very high | Cd ≥ 32 | SE1 | 106.30 | Cd > Ni > Cr | Pb | Zn > Cu | Hg |
KR1 | 80.56 | Cd > Cu > Pb > Zn > Ni | Hg > Cr | |||||
KR2 | 53.48 | Cd > Pb > Cu > Zn | Cr | Hg > Ni | ||||
Considerable | 16 ≤ Cd < 32 | SL1 | 26.57 | Cd > Ni > Pb > Cu > Zn | Cr > Hg | |||
Moderate | 8 ≤ Cd < 16 | CI1 | 15.16 | Cd | Cu > Hg > Pb > Ni > Zn | Cr | ||
CI2 | 12.63 | Cd | Cu > Hg > Ni > Pb > Zn | Cr | ||||
BO1 | 11.63 | Cd | Pb > Ni | Cu > Zn > Cr > Hg | ||||
CH2 | 10.00 | Cd | Cu > Zn | Pb > Ni > Hg > Cr | ||||
CH1 | 8.10 | Cd | Cu > Zn | Pb > Ni > Hg > Cr | ||||
Low | Cd < 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazekašová, D.; Petrovič, F.; Fazekaš, J.; Štofejová, L.; Baláž, I.; Tulis, F.; Tóth, T. Soil Contamination in the Problem Areas of Agrarian Slovakia. Land 2021, 10, 1248. https://doi.org/10.3390/land10111248
Fazekašová D, Petrovič F, Fazekaš J, Štofejová L, Baláž I, Tulis F, Tóth T. Soil Contamination in the Problem Areas of Agrarian Slovakia. Land. 2021; 10(11):1248. https://doi.org/10.3390/land10111248
Chicago/Turabian StyleFazekašová, Danica, František Petrovič, Juraj Fazekaš, Lenka Štofejová, Ivan Baláž, Filip Tulis, and Tomáš Tóth. 2021. "Soil Contamination in the Problem Areas of Agrarian Slovakia" Land 10, no. 11: 1248. https://doi.org/10.3390/land10111248
APA StyleFazekašová, D., Petrovič, F., Fazekaš, J., Štofejová, L., Baláž, I., Tulis, F., & Tóth, T. (2021). Soil Contamination in the Problem Areas of Agrarian Slovakia. Land, 10(11), 1248. https://doi.org/10.3390/land10111248