Water–Soil–Vegetation Dynamic Interactions in Changing Climate
Abstract
:1. Introduction
2. Overview of this Special Issue
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Suni, T.; Guenther, A.; Hansson, H.C.; Kulmala, M.; Andreae, M.O.; Arneth, A.; Artaxo, P.; Blyth, E.; Brus, M.; Ganzeveld, L.; et al. The significance of land-atmosphere interactions in the Earth system—iLEAPS achievements and perspectives. Anthropocene 2015, 12, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, X.; Li, F.; Gao, R.; Duan, L.; Liu, T. Responses of grass production to precipitation in a mid-latitude typical steppe watershed. Trans. ASABE 2014, 57, 1595–1610. [Google Scholar]
- Wang, X.; Yang, X.; Liu, T.; Li, F.; Gao, R.; Duan, L.; Luo, Y. Trend and extreme occurrence of precipitation in a midlatitude Eurasian steppe watershed at various time scales. Hydrol. Process. 2013, 28, 5547–5560. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Gao, R.; Luo, Y.; Liu, T. Predicted NPP spatiotemporal variations in a semiarid steppe watershed for historical and trending climates. J. Arid Environ. 2014, 104, 67–79. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Steffens, M.; Kölbl, A.; Kögel-Knabner, I. Degradation and small-scale spatial homogenization of topsoils in intensively-grazed steppes of Northern China. Soil Tillage Res. 2009, 104, 299–310. [Google Scholar] [CrossRef]
- Gao, R.; Li, F.; Wang, X.; Liu, T.; Du, D. Temporal variations of runoff in a rapidly urbanizing semi-arid watershed. J. Water Clim. Chang. 2016, 7, 578–597. [Google Scholar] [CrossRef]
- Wang, X. Advances in separating effects of climate variability and human activity on stream discharge: An overview. Adv. Water Resour. 2014, 71, 209–218. [Google Scholar] [CrossRef]
- Tong, C.; Wub, J.; Yonga, S.; Yangd, J.; Yonga, W. A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J. Arid Environ. 2004, 59, 133–149. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Li, F.; Gao, R.; Yang, X.; Duan, L.; Luo, Y.; Li, R. Simulated soil erosion from a semiarid typical steppe watershed using an integrated aeolian and fluvial prediction model. Hydrol. Process. 2014, 28, 325–340. [Google Scholar] [CrossRef]
- Yang, X. Hydro-Climate Temporal Variations and Their Influences on Net Primary Production in a Eurasian Steppe Watershed. Master’s Thesis, Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, USA, 2014; p. 100. [Google Scholar]
- Wang, X.; Shang, S.; Yang, W.; Melesse, A.M. Simulation of an agricultural watershed using an improved curve number method in SWAT. Trans. ASABE 2008, 51, 1323–1339. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W.; Melesse, A.M. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 2008, 51, 55–72. [Google Scholar] [CrossRef]
- Brunke, M.; Broxton, P.; Pelletier, J.; Gochis, D.; Hazenberg, P.; Lawrence, D.M.; Leung, L.R.; Niu, G.; Troch, P.A.; Zeng, X. Implementing and evaluating variable soil thickness in the Community Land Model, Version 4.5 (CLM4.5). Am. Meteorol. Soc. 2016, 29, 3441–3461. [Google Scholar]
- Wang, Z.; Bagen, C.; Zhu, Z. Revision of the Basal crop coefficients of planted grassland as the source for the sandstorm in Beijing and Inner Mongolia. J. Water Resour. Water Eng. 2006, 15, 1–7. [Google Scholar]
- Henwood, W. The world’s temperate grasslands: A beleaguered biome. Parks 1998, 8, 1–2. [Google Scholar]
- White, R.P.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems; World Resource Institute: Washington, DC, USA, 2000; Volume 4, p. 275. [Google Scholar]
- Wang, Z. Strategic considerations for the protection of grassland ecosystems in China. Grassl. China 2005, 27, 1–2. [Google Scholar]
- Wang, X.; Luo, Y.; Liu, T.; Gao, R.; Li, F.; Duan, L. Estimated grazing removal rate of grasses in a semiarid Eurasian steppe watershed as influenced by climate. In Proceedings of the 18th CIGR World Congress, Session I Land and Water Engineering, 2nd Inter-Regional Conference on Land and water Challenges Ecohydrological Process and Pasture Management Issues, Hohhot, China, 12 June 2014. [Google Scholar]
- Barnes, R.F.; Nelson, C.J.; Collins, M.; Moore, K.J. Forages: An Introduction to Grassland Agriculture; Iowa State Press: Ames, IA, USA, 2003; Volume 1. [Google Scholar]
- Chepil, W.S. Dynamics of wind erosion: V. cumulative intensity of soil drifting across eroding fields. Soil Sci. 1946, 61, 257. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change: The Scientific Basis, in Contribution of Working Group 1 to Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J., Ding, Y., Eds.; Cambridge University Press: Cambridge, UK, 2001; p. 881. [Google Scholar] [CrossRef]
- Li, B.; Shi, P.J.; Lin, X.Q. Development of a Chinese grassland-livestock balance dynamic monitoring system. Grassl. Sci. 1995, 3, 95–102. [Google Scholar]
- Peart, B. Lift in a Working Landscape: Towards a Conservation Strategy for the World’s Temperate Grasslands; The World Temperate Grasslands Conservation Initiative Workshop: Hohhot, China, 2008; Volume 1, p. 25. [Google Scholar]
- Li, S.; Asanuma, J.; Kotani, A.; Davaa, G.; Oyunbaatar, D. Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. J. Hydrol. 2007, 333, 133–143. [Google Scholar] [CrossRef]
- Duan, L.; Liu, T.; Wang, X.; Wang, G.; Ma, L.; Luo, Y. Spatio-temporal variations in soil moisture and physicochemical properties of a typical semiarid sand-meadow-desert landscape as influenced by land use. Hydrol. Earth Syst. Sci. 2011, 15, 1865–1877. [Google Scholar] [CrossRef]
- Bai, Y.; Han, X.; Wu, J.; Chen, Z.; Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 2004, 431, 181–184. [Google Scholar] [CrossRef]
- Gőri, S.; Kapocsi, I.; Szilágyi, A.; Zsoldos, I.; Molnár, A.; Nagy, G.; Tamás, G. Restoration of Pannonic Steppes and Marshes. In LIFE-Nature Project in the Hortobágy National Park; HortobáNational Park Directorate: Debrecen, Hungary, 2005; Volume 1, p. 20. [Google Scholar]
- Christensen, L.; Coughenour, M.B.; Ellis, J.E.; Chen, Z. Vulnerability of the Asian typical steppe to grazing and climate change. Clim. Chang. 2004, 63, 351–368. [Google Scholar] [CrossRef]
- Endo, N.; Kadota, T.; Matsumoto, J.; Ailikun, B.; Yasunari, T. Climatology and trends in summer precipitation characteristics in Mongolia for the period 1960–1998. J. Meteorol. Soc. Jpn. 2006, 84, 543–551. [Google Scholar] [CrossRef]
- Gao, R.; Li, F.; Wang, X.; Liu, T.; Du, D.; Bai, Y. Spatiotemporal variations in precipitation across the Chinese Mongolian plateau over the past half century. Atmos. Res. 2017, 193, 204–215. [Google Scholar] [CrossRef]
- Shao, C.; Chen, J.; Li, L.; Xu, W.; Chen, S.; Gwen, T.; Xu, J.; Zhang, W. Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems. Agric. For. Meteorol. 2008, 148, 1433–1443. [Google Scholar] [CrossRef]
- Wang, X. Temporal variations of streamflow in a mid-latitude Eurasian steppe watershed in the past half century. Hydrol. Res. 2016, 47, 185–200. [Google Scholar] [CrossRef]
- Blank, B.; Breuer, L.; Butterbach-Bahl, K.; Frede, H.G. Indicators of grazing impact in Inner Mongolian steppe ecosystems. Geophys. Res. Abstr. 2009, 11, EUG2009-8683. [Google Scholar]
- Christensen, L.; Coughenour, M.B.; Ellis, J.E.; Chen, Z. Sustainability of Inner Mongolian grasslands: Application of the Savanna model. J. Range Manag. 2003, 56, 319–327. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Mei, X.; Huang, X.; Cui, X.; Zhou, X.; Niu, H. CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecol. 2008, 33, 133–143. [Google Scholar] [CrossRef]
- Zhang, Y.; Munkhtsetseg, E.; Kadota, T.; Ohata, T. An observational study of ecohydrology of a sparse grassland at the edge of the Eurasian cryosphere in Mongolia. J. Geophys. Res. 2005, 110, 85–90. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Wang, S. Responses of grassland ecosystems to precipitation and land use along the northeast China transect. J. Veg. Sci. 2002, 13, 361–368. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.; Yu, R. Field measurement of the water retention curves and simple estimation of the parameters for soils in the central region of Horqin sandy land. In Proceedings of the 2006 Western Pacific Geophysics Meeting, Beijing, China, 24–27 July 2006. [Google Scholar]
- Song, Y.; Guo, Z.; Lu, Y.; Yan, D.; Liao, Z.; Liu, H.; Cui, Y. Pixel-level spatiotemporal analyses of vegetation fractional coverage variation and its influential factors in a desert steppe: A case study in Inner Mongolia, China. Water 2017, 9, 478. [Google Scholar] [CrossRef]
- Wang, X.; Pedram, S.; Liu, T.; Gao, R.; Li, F.; Luo, Y. Estimated grass grazing removal rate in a semiarid Eurasian steppe watershed as influenced by climate. Water 2017, 8, 339. [Google Scholar] [CrossRef]
- Li, B.; Li, C.; Liu, J.; Zhang, Q.; Duan, L. Decreased streamflow in the Yellow River Basin, China: Climate change or human-induced? Water 2017, 9, 116. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Li, X.; Zhang, Y.; Yang, L. Contributions of climate variability and human activities to runoff changes in the upper catchment of the Red River Basin, China. Water 2017, 8, 414. [Google Scholar] [CrossRef]
- Lu, G.; Wu, H.; Xiao, H.; He, H.; Wu, Z. Impact of climate change on drought in the upstream Yangtze River Region. Water 2017, 8, 576. [Google Scholar] [CrossRef]
- Moon, S.; Kang, B. Terrestrial sediment yield projection under the bias-corrected nonstationary scenarios with hydrologic extremes. Water 2017, 8, 433. [Google Scholar] [CrossRef]
- Tahmasebi Nasab, M.; Singh, V.; Chu, X. SWAT modeling for depression-dominated areas: How do depressions manipulate hydrologic modeling? Water 2017, 9, 58. [Google Scholar] [CrossRef]
- Fu, Q.; Hou, R.; Li, T.; Yan, P.; Ma, Z. The critical depth of freeze-thaw soil under different types of snow cover. Water 2017, 9, 370. [Google Scholar] [CrossRef]
- Duan, L.; Lv, Y.; Yan, X.; Liu, T.; Wang, X. Upscaling stem to community-level transpiration for two sand-fixing plants: Salix gordejevii and Caragana microphylla. Water 2017, 9, 361. [Google Scholar] [CrossRef]
- Johnson, J.M.; Loáiciga, H.A. Coupled infiltration and kinematic-wave runoff simulation in slopes: Implications for slope stability. Water 2017, 9, 327. [Google Scholar] [CrossRef]
- Cheng, X.; Zhu, D.; Wang, X.; Yu, D.; Xie, J. Effects of nonaerated circulation water velocity on nutrient release from aquaculture pond sediments. Water 2017, 9, 6. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Q.; Wang, X.; Hu, X.; Wang, C.; Pang, Y.; Hu, Y.; Zhao, Y.; Zhao, X. Spatiotemporal distribution of eutrophication in Lake Tai as affected by wind. Water 2017, 9, 200. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chu, X.; Liu, T.; Cheng, X.; Whittecar, R. Water–Soil–Vegetation Dynamic Interactions in Changing Climate. Water 2017, 9, 740. https://doi.org/10.3390/w9100740
Wang X, Chu X, Liu T, Cheng X, Whittecar R. Water–Soil–Vegetation Dynamic Interactions in Changing Climate. Water. 2017; 9(10):740. https://doi.org/10.3390/w9100740
Chicago/Turabian StyleWang, Xixi, Xuefeng Chu, Tingxi Liu, Xiangju Cheng, and Rich Whittecar. 2017. "Water–Soil–Vegetation Dynamic Interactions in Changing Climate" Water 9, no. 10: 740. https://doi.org/10.3390/w9100740