You are currently on the new version of our website. Access the old version .
WaterWater
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

21 January 2026

Spatiotemporal Evolution of Compound Dry–Hot Events and Their Impacts on Vegetation Net Primary Productivity in the Yangtze River Basin

,
and
College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Ecohydrology in the Context of Climate Change: Strategies for Management, Monitoring, and Modeling

Abstract

Compound dry–hot events increasingly threaten ecosystem productivity under global warming. Using ERA5-Land and MODIS NPP (2002–2024) for the Yangtze River Basin, we built climate indices and developed a Copula-based standardized compound dry–hot index (SCDHI) to detect events and examine spatiotemporal patterns. Trend and correlation analyses quantified NPP sensitivity and lag, and an NPP–SCDHI coupling framework assessed resistance and resilience across major vegetation types. Basin-wide monthly NPP increased slightly, while SCDHI decreased, indicating a warmer and drier tendency. Under dry–hot conditions, NPP was mainly negatively related to event intensity in the upper basin but positively related across much of the middle–lower plains. The mean NPP response time was approximately 2 months, with forests and croplands typically lagging 2–3 months. Under extreme stress, forests showed high resistance but limited recovery, whereas shrublands showed moderate resistance and low resilience. Cultivated vegetation exhibited the lowest resistance and weak resilience, grasslands had low resistance but relatively rapid recovery, and alpine vegetation showed moderate resistance and the highest resilience. Cultivated vegetation and grasslands may therefore represent high-risk types for ecological management.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.