Bedload Dynamics in a Partially Glaciated Catchment: Insights from over One Decade of Measuring Bedload Transport Processes and Future Perspectives Under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sedimentological and Hydrological Data
2.3. Hysteresis Analysis
2.4. Glacier Data
3. Results
3.1. Sedimentological and Hydrological Analysis
3.2. Hysteresis Analysis of Bedload Transport and Water Discharge Relationship
3.3. Interaction of Annual Bedload Dynamics and Glacier Mass Balances
4. Discussion
4.1. Bedload Transport and Water Discharge Dynamics
4.2. Future Perspectives Related to the Interaction of Long-Term Bedload Dynamics and Glacier Mass Balances
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallet, B.; Hunter, L.; Bogen, J. Rates of Erosion and Sediment Evacuation by Glaciers: A Review of Field Data and Their Implications. Glob. Planet. Change 1996, 12, 213–235. [Google Scholar] [CrossRef]
- Church, M.; Ryder, J.M. Paraglacial Sedimentation: A Consideration of Fluvial Processes Conditioned by Glaciation. Geol. Soc. Am. Bull. 1972, 83, 3059–3072. [Google Scholar] [CrossRef]
- Lane, S.N.; Bakker, M.; Gabbud, C.; Micheletti, N.; Saugy, J. Sediment Export, Transient Landscape Response and Catchment-Scale Connectivity Following Rapid Climate Warming and Alpine Glacier Recession. Geomorphology 2017, 277, 210–227. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A Globally Complete Inventory of Glaciers. J. Glaciol. 2017, 60, 537–552. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Fischer, A.; Seiser, B.; Stocker Waldhuber, M.; Mitterer, C.; Abermann, J. Tracing Glacier Changes in Austria from the Little Ice Age to the Present Using a Lidar-Based High-Resolution Glacier Inventory in Austria. Cryosphere 2015, 9, 753–766. [Google Scholar] [CrossRef]
- Zanoner, T.; Carton, A.; Seppi, R.; Carturan, L.; Baroni, C.; Salvatore, M.C.; Zumiani, M. Little Ice Age Mapping as a Tool for Identifying Hazard in the Paraglacial Environment: The Case Study of Trentino (Eastern Italian Alps). Geomorphology 2017, 295, 551–562. [Google Scholar] [CrossRef]
- Haeberli, W.; Wegmann, M.; Mühl, D.V. Slope Stability Problems Related to Glacier Shrinkage and Permafrost Degradation in the Alps. Schweizerische Geologische Gesellschaft: Basel, Switzerland, 1997. [Google Scholar]
- Haeberli, W. Frequency and Characteristics of Glacier Floods in the Swiss Alps. Ann. Glaciol. 1983, 4, 85–90. [Google Scholar] [CrossRef]
- Klimeš, J.; Novotný, J.; Novotná, I.; de Urries, B.J.; Vilímek, V.; Emmer, A.; Strozzi, T.; Kusák, M.; Cochachin Rapre, A.; Hartvich, F.; et al. Landslides in Moraines as Triggers of Glacial Lake Outburst Floods: Example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides 2016, 13, 1461–1477. [Google Scholar] [CrossRef]
- Vilímek, V.; Emmer, A.; Huggel, C.; Schaub, Y.; Würmli, S. Database of Glacial Lake Outburst Floods (GLOFs)–Ipl Project No. 179. Landslides 2013, 11, 161–165. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An Overview of Glacial Hazards in the Himalayas. Quat. Int. 2000, 65–66, 31–47. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-Scale Hydrological Response to Future Glacier Mass Loss. Nat. Clim. Change 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C. Temporal Variability of the Non-Steady Contribution from Glaciers to Water Discharge in Western Austria. J. Hydrol. 2009, 376, 353–361. [Google Scholar] [CrossRef]
- Savi, S.; Pitscheider, F.; Engel, M.; Coviello, V.; Strecker, M.R.; Comiti, F. Sediment Export from an Alpine Proglacial Area under a Changing Climate: Budgets, Rates, and Geomorphological Processes. Geomorphology 2024, 462, 109343. [Google Scholar] [CrossRef]
- Buter, A.; Heckmann, T.; Filisetti, L.; Savi, S.; Mao, L.; Gems, B.; .Comiti, F. Effects of Catchment Characteristics and Hydro-Meteorological Scenarios on Sediment Connectivity in Glacierised Catchments. Geomorphology 2022, 402, 108128. [Google Scholar] [CrossRef]
- Comiti, F.; Mao, L.; Penna, D.; Dell’Agnese, A.; Engel, M.; Rathburn, S.; Cavalli, M. Glacier Melt Runoff Controls Bedload Transport in Alpine Catchments. Earth Planet. Sci. Lett. 2019, 520, 77–86. [Google Scholar] [CrossRef]
- Coviello, V.; Vignoli, G.; Simoni, S.; Bertoldi, W.; Engel, M.; Buter, A.; Marchetti, G.; Andreoli, A.; Savi, S.; Comiti, F. Bedload Fluxes in a Glacier-Fed River at Multiple Temporal Scales. Water Resour. Res. 2022, 58, e2021WR031873. [Google Scholar] [CrossRef]
- Mao, L.; Dell’Agnese, A.; Huincache, C.; Penna, D.; Engel, M.; Niedrist, G.; Comiti, F. Bedload Hysteresis in a Glacier-Fed Mountain River. Earth Surf. Process. Landf. 2014, 39, 964–976. [Google Scholar] [CrossRef]
- Carrillo, R.; Mao, L. Coupling Sediment Transport Dynamics with Sediment and Discharge Sources in a Glacial Andean Basin. Water 2020, 12, 3452. [Google Scholar] [CrossRef]
- Gomez, B.; Soar, P.J. Bedload Transport: Beyond Intractability. R. Soc. Open Sci. 2022, 9, 211932. [Google Scholar] [CrossRef]
- Ancey, C. Bedload Transport: A Walk between Randomness and Determinism. Part 1. The State of the Art. J. Hydraul. Res. 2020, 58, 1–17. [Google Scholar] [CrossRef]
- Rickenmann, D.; Turowski, J.M.; Fritschi, B.; Klaiber, A.; Ludwig, A. Bedload Transport Measurements at the Erlenbach Stream with Geophones and Automated Basket Samplers. Earth Surf. Process. Landf. 2012, 37, 1000–1011. [Google Scholar] [CrossRef]
- Rainato, R.; Mao, L.; Picco, L. The Effects of Low-Magnitude Flow Conditions on Bedload Mobility in a Steep Mountain Stream. Geomorphology 2020, 367, 107345. [Google Scholar] [CrossRef]
- Antoniazza, G.; Nicollier, T.; Boss, S.; Mettra, F.; Badoux, A.; Schaefli, B.; Rickenmann, D.; Lane, S.N. Hydrological Drivers of Bedload Transport in an Alpine Watershed. Water Resour. Res. 2022, 58, 2021WR030663. [Google Scholar] [CrossRef]
- Nicollier, T.; Antoniazza, G.; Rickenmann, D.; Ammann, L.; Kirchner, J. Toward a General Calibration of the Swiss Plate Geophone System for Fractional Bedload Transport. Earth Surf. Dyn. 2022, 10, 929–951. [Google Scholar] [CrossRef]
- Rickenmann, D.; Fritschi, B. Bedload Transport Measurements with Impact Plate Geophones in Two Austrian Mountain Streams (Fischbach and Ruetz): System Calibration, Grain Size Estimation, and Environmental Signal Pick-Up. Earth Surf. Dyn. 2017, 5, 669–687. [Google Scholar] [CrossRef]
- Chen, Z.; He, S.; Nicollier, T.; Ammann, L.; Badoux, A.; Rickenmann, D. Finite Element Modelling of the Swiss Plate Geophone Bedload Monitoring System. J. Hydraul. Res. 2022, 60, 792–810. [Google Scholar] [CrossRef]
- Goto, K.; Itoh, T.; Nagayama, T.; Kasai, M.; Marutani, T. Experimental and Theoretical Tools for Estimating Bedload Transport Using a Japanese Pipe Hydrophone. Int. J. Eros. Control Eng. 2014, 7, 101–110. [Google Scholar] [CrossRef]
- Harsanto, P.; Ikhsan, J.; Legono, D.; Pamudji Rahardjo, A.; Tsutsumi, D. Sediment Transport Pre-Measurement as Revealed by the Hydrophone Monitoring Technique at a Volcanic River. IOP Conf. Ser. Earth Environ. Sci. 2020, 437, 012050. [Google Scholar] [CrossRef]
- Geay, T.; Belleudy, P.; Gervaise, C.; Habersack, H.; Aigner, J.; Kreisler, A.; Seitz, H.; Laronne, J.B. Passive Acoustic Monitoring of Bed Load Discharge in a Large Gravel Bed River. J. Geophys. Res. Earth Surf. 2017, 122, 528–545. [Google Scholar] [CrossRef]
- Seo, J.; Kim, K.; Woo, C.; Changwoo, L.; Lee, H. Evaluation of Field Application and Estimation of Bedload Discharge in the Forest Watershed Using the Hydrophone. J. Korea Acad. -Ind. Coop. Soc. 2020, 21, 807–818. [Google Scholar] [CrossRef]
- Marineau, M. Surrogate Bedload Monitoring Using Hydrophones in the Gravel-Bedded Cedar River, Washington. In Proceedings of the Hydraulic Measurements and Experimental Methods Conference, Snowbird, Utah, 12–15 August 2012. [Google Scholar]
- Marineau, M.; Wright, S.; Gaeuman, D.; Curran, C.; Stark, K.; Simeon, J.; Schenk, E. Overview of Five Recent Bedload Monitoring Field Experiments Using Hydrophones. In Proceedings of the SEDHYD, Reno, Nevada, 24–28 June 2019. [Google Scholar]
- Bakker, M.; Gimbert, F.; Geay, T.; Misset, C.; Zanker, S.; Recking, A. Field Application and Validation of a Seismic Bedload Transport Model. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005416. [Google Scholar] [CrossRef]
- Piantini, M.; Gimbert, F.; Bakker, M.; Recking, A.; Nanni, U. Using a Dense Seismic Array to Study Fluvial Processes in a Braided River Reach under Flood Conditions. LHB Hydrosci. J. 2022, 108, 2053314. [Google Scholar] [CrossRef]
- Antoniazza, G.; Nicollier, T.; Wyss, C.R.; Boss, S.; Rickenmann, D. Bedload Transport Monitoring in Alpine Rivers: Variability in Swiss Plate Geophone Response. Sensors 2020, 20, 4089. [Google Scholar] [CrossRef]
- Liébault, F.; Klotz, S.; Jantzi, H.; Ravanat, X. Monitoring Du Charriage Avec Une Trappe a Fente, Observatoire De Draix. Collect. Edytem 2017, 19, 221–226. [Google Scholar] [CrossRef]
- Rindler, R.; Schwarz, S.; Liedermann, M.; Shire-Peterlechner, D.; Kreisler, A.; Aigner, J.; Tritthart, M.; Habersack, H. Effective Transport Width—A Methodology to Describe the Spatial Variability of Bedload Transport. Int. J. Sediment. Res. 2023, 38, 294–301. [Google Scholar] [CrossRef]
- Schwarz, S.; Rindler, R.; Liedermann, M.; Shire-Peterlechner, D.; Lammer, A.; Tritthart, M.; Habersack, H. Challenges and Opportunities of Sediment Budgeting Using the River Sediment Budget Approach (Rsba): Three Cases in Austrian Gravel-Bed River Reaches. Geomorphology 2024, 455, 109182. [Google Scholar] [CrossRef]
- Wyss, C.R.; Rickenmann, D.; Fritschi, B.; Turowski, J.M.; Weitbrecht, V.; Boes, R.M. Measuring Bed Load Transport Rates by Grain-Size Fraction Using the Swiss Plate Geophone Signal at the Erlenbach. J. Hydraul. Eng. 2016, 142, 04016003. [Google Scholar] [CrossRef]
- Lammer, A.; Rindler, R.; Tritthart, M.; Liedermann, M.; Moser, M.; Shire-Peterlechner, D.; Schwarz, S.; Habersack, H. Evaluating the Performance of Transport Equations through Long-Term Records of Integrative Measured Bedload Data. Int. J. Sediment. Res. 2024, 40, 158–171. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Buffington, J.M. Channel-reach morphology in mountain drainage basins. GSA Bull. 1997, 109, 596–611. [Google Scholar] [CrossRef]
- Hauer, C.; Pulg, U. The non-fluvial nature of Western Norwegian rivers and the implications for channel patterns and sediment composition. Catena 2018, 171, 83–98. [Google Scholar] [CrossRef]
- Kreisler, A.; Moser, M.; Aigner, J.; Rindler, R.; Tritthart, M.; Habersack, H. Analysis and Classification of Bedload Transport Events with Variable Process Characteristics. Geomorphology 2017, 291, 57–68. [Google Scholar] [CrossRef]
- Turowski, J.M.; Rickenmann, D.; Dadson, S.J. The Partitioning of the Total Sediment Load of a River into Suspended Load and Bedload: A Review of Empirical Data. Sedimentology 2010, 57, 1126–1146. [Google Scholar] [CrossRef]
- Williams, G.P. Sediment Concentration Versus Water Discharge during Single Hydrologic Events in Rivers. J. Hydrol. 1989, 111, 89–106. [Google Scholar] [CrossRef]
- Gunsolus, E.H.; Binns, A.D. Effect of Morphologic and Hydraulic Factors on Hysteresis of Sediment Transport Rates in Alluvial Streams. River Res. Appl. 2017, 34, 183–192. [Google Scholar] [CrossRef]
- Hassan, M.A.; Li, W.; Viparelli, E.; An, C.; Mitchell, A.J. Influence of Sediment Supply Timing on Bedload Transport and Bed Surface Texture during a Single Experimental Hydrograph in Gravel Bed Rivers. Water Resour. Res. 2023, 59, e2023WR035406. [Google Scholar] [CrossRef]
- WGMS. Fluctuations of Glaciers Database; World Glacier Monitoring Service (WGMS): Zurich, Switzerland, 2024. [Google Scholar] [CrossRef]
- Parde, M. Fleuves et Rivieres; Librairie Armand Colin: Paris, France, 1933. [Google Scholar]
- Schweigl, J. Neue geochronologische und isotopengeologische Daten zur voralpidischen Entwicklungsgeschichte im Ötztalkristallin (Ostaplen). In Jahrbuch der Geologischen Bundesanstalt; Geologische Bundesanstalt Wien: Vienna, Austria; Leipzig, Germany, 1995; Volume 138, pp. 131–149. [Google Scholar]
- Bunte, K.; Abt, S.R.; Potyondy, J.P.; Swingle, K.W. A Comparison of Coarse Bedload Transport Measured with Bedload Traps and Helley-Smith Samplers. Geodin. Acta 2012, 21, 53–66. [Google Scholar] [CrossRef]
- Habersack, H.; Kreisler, A.; Rindler, R.; Aigner, J.; Seitz, H.; Liedermann, M.; Laronne, J.B. Integrated Automatic and Continuous Bedload Monitoring in Gravel Bed Rivers. Geomorphology 2017, 291, 80–93. [Google Scholar] [CrossRef]
- Rickenmann, D.; Turowski, J.M.; Fritschi, B.; Wyss, C.R.; Laronne, J.B.; Barzilai, R.; Reid, I.; Kreisler, A.; Aigner, J.; Seitz, H.; et al. Bedload Transport Measurements with Impact Plate Geophones: Comparison of Sensor Calibration in Different Gravel-Bed Streams. Earth Surf. Process Landf. 2014, 39, 928–942. [Google Scholar] [CrossRef]
- Aigner, J.; Kreisler, A.; Rindler, R.; Hauer, C.; Habersack, H. Bedload Pulses in a Hydropower Affected Alpine Gravel Bed River. Geomorphology 2017, 291, 116–127. [Google Scholar] [CrossRef]
- Rindler, R.; Schwarz, S.; Lammer, A.; Shire-Peterlechner, D.; Gmeiner, P.; Liedermann, M.; Tritthart, M.; Habersack, H. From Glaciers to Large Rivers: Lessons and Insights from Long-Term Bedload Monitoring. Earth Surf. Process. Landf. 2025, 50, e70059. [Google Scholar] [CrossRef]
- Jing, T.; Zeng, Y.; Fang, N.; Dai, W.; Shi, Z. A Review of Suspended Sediment Hysteresis. Water Resour. Res. 2024, 61, e2024WR037216. [Google Scholar] [CrossRef]
- Bogen, J. The Hysteresis Effect of Sediment Transport Systems. Nor. Geogr. Tidsskr. Nor. J. Geogr. 1980, 34, 45–54. [Google Scholar] [CrossRef]
- Pretzlav, K.L.G.; Johnson, J.P.L.; Bradley, D.N. Smartrock Transport in a Mountain Stream: Bedload Hysteresis and Changing Thresholds of Motion. Water Resour. Res. 2020, 56, e2020WR028150. [Google Scholar] [CrossRef]
- Rickenmann, D. Bedload Transport Fluctuations, Flow Conditions, and Disequilibrium Ratio at the Swiss Erlenbach Stream: Results from 27 Years of High-Resolution Temporal Measurements. Earth Surf. Dyn. 2024, 12, 11–34. [Google Scholar] [CrossRef]
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Changes in Snow, Ice and Frozen Ground. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge Universitiy Press: Cambridge, UK; New York, NY, USA, 2007; pp. 339–383. [Google Scholar]
- Fischer, A. Long-Term Glacier Monitoring at the Lter Test Sites Hintereisferner, Kesselwandferner and Jamtalferner and Other Glaciers in Tyrol: A Source of Ancillary Information for Biological Succession Studies. Plant Ecol. Divers. 2013, 6, 537–547. [Google Scholar] [CrossRef]
- Hoinkes, H. Methoden und Möglichkeiten von Massenhaushaltsstudien auf Gletschern. Zeitrschrift Für. Gletscherkunde Und Glazialgeol. 1970, 6, 37–90. [Google Scholar]
- Pelto, M.S. The Impact of Sampling Density on Glacier Mass Balance Determination. Hydrol. Process. 2000, 14, 3215–3225. [Google Scholar] [CrossRef]
- Zhang, T.; Li, D.; East, A.E.; Kettner, A.J.; Best, J.; Ni, J.; Lu, X. Shifted Sediment-Transport Regimes by Climate Change and Amplified Hydrological Variability in Cryospherefed Rivers. Sci. Aadvances 2023, 9, eadi5019. [Google Scholar] [CrossRef]
- Compagno, L.; Eggs, S.; Huss, M.; Zekollari, H.; Farinotti, D. Brief Communication: Do 1.0, 1.5, or 2.0 °C Matter for the Future Evolution of Alpine Glaciers? Cryosphere 2021, 15, 2593–2599. [Google Scholar] [CrossRef]
- Haslinger, K.; Breinl, K.; Pavlin, L.; Pistotnik, G.; Bertola, M.; Olefs, M.; Greilinger, M.; Schoner, W.; Bloschl, G. Increasing Hourly Heavy Rainfall in Austria Reflected in Flood Changes. Nature 2025, 639, 667–672. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, S.; Paster, M.; Lammer, A.; Shire-Peterlechner, D.; Tritthart, M.; Habersack, H.; Rindler, R. Bedload Dynamics in a Partially Glaciated Catchment: Insights from over One Decade of Measuring Bedload Transport Processes and Future Perspectives Under Climate Change. Water 2025, 17, 1394. https://doi.org/10.3390/w17091394
Schwarz S, Paster M, Lammer A, Shire-Peterlechner D, Tritthart M, Habersack H, Rindler R. Bedload Dynamics in a Partially Glaciated Catchment: Insights from over One Decade of Measuring Bedload Transport Processes and Future Perspectives Under Climate Change. Water. 2025; 17(9):1394. https://doi.org/10.3390/w17091394
Chicago/Turabian StyleSchwarz, Sabrina, Michael Paster, Andrea Lammer, Dorian Shire-Peterlechner, Michael Tritthart, Helmut Habersack, and Rolf Rindler. 2025. "Bedload Dynamics in a Partially Glaciated Catchment: Insights from over One Decade of Measuring Bedload Transport Processes and Future Perspectives Under Climate Change" Water 17, no. 9: 1394. https://doi.org/10.3390/w17091394
APA StyleSchwarz, S., Paster, M., Lammer, A., Shire-Peterlechner, D., Tritthart, M., Habersack, H., & Rindler, R. (2025). Bedload Dynamics in a Partially Glaciated Catchment: Insights from over One Decade of Measuring Bedload Transport Processes and Future Perspectives Under Climate Change. Water, 17(9), 1394. https://doi.org/10.3390/w17091394