Abstract
Loess exhibits a pronounced reduction in strength under rainfall infiltration, making loess slopes highly susceptible to instability and failure during rainfall events. Although numerous studies have investigated the failure mechanisms of loess slopes under rainfall, most have overlooked the role of joints, which are intrinsic structural features of loess. To address this gap, this study selected the Jianxi landslide, located in Lingbao city of Henan province, as a representative case and employed a numerical simulation method to examine the influence of joints on the moisture fields and stability conditions of the Jianxi landslide. The results elucidate that the safety factor of the Jianxi landslide considering joints is 15.7% lower than the one measured without considering joints and identify the critical rainfall threshold leading to landslide instability to be 100 mm/d. Furthermore, when joints are considered, the sliding zone becomes deeper, indicating a larger landslide volume and more severe potential damage. This work provides new insights into the failure mechanism of loess landslides and offers a scientific basis for early warning.